Wind Farm Maintenance Donatella Zappalá Faculty of Aerospace Engineering – Wind Energy Section D.Zappala@tudelft.nl TWIND course - Design and testing of offshore wind turbines and farms Thursday 20th October 2022 # Outline | 1 | Wind Energy Overview | |---|--| | 2 | Wind Farm Asset Management | | 3 | O&M: Maintenance Strategies | | 4 | Wind Turbine Reliability: Case Studies | | 5 | Condition Monitoring | | 6 | Conclusions | # Wind Energy Today - Europe # Wind Energy Today - Europe #### LCOE [EUR/MWh] Note: Offshore wind includes grid connection costs of EUR 14/MWh Source: Roland Berger, 2021 #### European Green Deal - All the energy used will come from renewable sources by 2050 - Offshore wind energy is <u>THE</u> key player in meeting the net-zero carbon emission target - ➤ The European Commission has proposed to increase Europe's offshore wind capacity from the current 28 GW up to 450 GW by 2050 - One third of offshore wind capacity is expected to be generated by floating wind turbines in deep waters (>50m) #### Wind Energy Cost Reduction 2020-2050 ## Wind Farm Asset Management Asset management is a systematic process of deploying, operating, maintaining, upgrading, and disposing of assets cost-effectively Goal: minimise the total expected life-cycle costs and maximise profitability - Design for availability - Operate for availability - Maintain for availability - a. Resource assessments, environmental impact, landscape, archaeological and unexploded ordnance (UXO) assessments. - b. Hub, pitch, blades, nacelle, gearbox, bearings, forgings, cast ngs, generator, converter and tower. - . Onshore foundat ons, intra-array cabling, substat on, of shore foundat on, subsea export cabling, converter, and transformer stat ons. - Onshore and of shore foundations. - e. Ports, warehouses, road transportat on and vessels Life-cycle of a wind farm. Source: WindEurope, 2020 #### Wind Energy Research & Innovation Priorities # Wind Energy LCOE – O&M #### **O&M of Offshore Wind Farms** ## States of a System Downtime is the time during which a turbine does not produce power output due to a failure # Maintenance Strategies #### **Corrective Maintenance** Run to failure and replace (failure-based) - ✓ Full use of the asset useful life, avoid unnecessary maintenance - ✓ Low criticality (cost and reliability) components ## **Operational Failure Characteristics** #### Maintenance Strategies #### Preventive Time-based Maintenance Scheduled inspection and replacements to prevent major failures - ✓ Asset delivers more predictable and reliable electricity - ✓ For assets with well-known and consistent failure-time correlation > Potentially expensive and risk of over-maintenance ## Maintenance Strategies #### **Preventive CBM** Extensive condition monitoring of critical component health - ✓ Detailed analysis to predict and pre-empt early failures - ✓ Plan the most effective maintenance actions on a dynamic schedule - ✓ Reduce unnecessary repairs and unplanned downtime - ✓ Improve asset availability and performance # How to Optimize a CBM Strategy? #### **Reliability Analysis** - Most critical wind turbine components - Failure modes and effect analysis (FMEA) Failure mode and symptom analysis (symptoms, fault indicators) **Cost-effective and Holistic Condition Monitoring** Detection Something happened! where? Diagnosis What did happen? Prognosis What will happen? When? Remaining useful lifetime estimation Maintenance decision Optimal maintenance scheduling Optimisation: O&M feedback, Field data ## What is Reliability? • Probability of successful operation How long will [a sub-assembly] perform its intended function without a breakdown? ## What is Reliability? Reliability is the probability that an item will meet its required function under stated conditions for a specified period of time • It can be expressed as the number of failures over a period of time - Failure rate (λ) $$\lambda = \frac{\left(\frac{\text{Total Number of Failures}}{\text{Turbine Population}}\right)}{\text{Operating Period}}$$ Reliability is essential when designing and operating any engineering system #### Causes of a Failures - **Design** failure - Manufacturing failure - Installation failure - Maintenance failure - Operation/Handling failure Life Cycle of wind farm asset # Think, Pair & Share: Wind Turbine Reliability | | Sit in pairs and discuss with partner: What is the typical reliability of onshore and offshore wind turbines? What is the most unreliable wind turbine component*? What is the component causing the longest downtime*? | 3 min | |------------|--|-------| | Mentimeter | Share with everybody | 3 min | ^{*}Refer to the geared wind turbine configuration #### Overall Failure Rates – Onshore vs Offshore Source: Dao et al., 2019, Wind Energy, 22(12), 1848-1871 ## Failure Rates & Downtime per Sub-system - Onshore Source: Ribrant & Bertling, 2007, IEEE Power Engineering Society General Meeting, 1-8; Tavner et al., 2010, EPE Journal, 20(4), 45-50 #### Failure rates – Onshore vs. Offshore Source: Dao et al., 2019, Wind Energy, 22(12), 1848-1871 #### Downtime – Onshore vs. Offshore #### Wind Turbine Drivetrain Configurations Doubly Fed Induction Generator (DFIG) with partial-power-converter Permanent Magnet Synchronous Generator (PMSG) with full-power converter #### DFIG vs PMSG # **Cost-effective Condition Monitoring** # How Are We Doing? | Sensors | Information | Intelligence | User Reporting | |---|--|---|---| | Large choice of sensors available. Challenge is to decide which can provide meaningful signals. | Potentially lots of SCADA and CMS data available. Need to filter what is and what is not suitable. Need standardisation of data and reporting. | Some ability to detect faults. Diagnosis of specific faults limited. Prognosis still difficult. | Difficult to interpret some of the intelligence. No real demarcation of reporting depending on user requirements. Danger that users are 'swamped' with unnecessary information. | | 9/10 | 7/10 | 5/10 | 2/10 | #### Conclusions O&M contributes up to around 34% to the cost of wind energy CBM minimizes O&M costs \rightarrow reducing inspection visits and corrective maintenance actions Reliability data is essential to identify the most critical components and perform failure mode and symptom analysis. Reliability studies show variation, however, generally... - Offshore: greater failure rates and downtime than onshore - → severe offshore operating environment - → difficulty in repair/maintenance accessibility - Electrical systems have highest failure rate - Generators and gearboxes contribute most to downtime Advanced monitoring techniques, using existing SCADA and CMS data, are essential for effective CBM # Thank you for your attention Any questions? Donatella Zappalá - D.Zappala@tudelft.nl