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Wind Energy Today - Europe

New instollotions in 2021:
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Wind Energy Today - Europe

LCOE [EUR/MWh]
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2050 vision: B~

European Green Deal L asoew

» All the energy used will come from renewable
sources by 2050

» Offshore wind energy is THE key player in meeting
the net-zero carbon emission target

» The European Commission has proposed to
increase Europe’s offshore wind capacity from the | _
current 28 GW up to 450 GW by 2050 '
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» One third of offshore wind capacity is expected to i et
be generated by floating wind turbines in deep ;
waters (>50m)
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Wind Energy Cost Reduction 2020-2050
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PLANNING

Wind Farm Asset Management T R —

oY BY

Asset management is a systematic process of mnumcwm
deploying, operating, maintaining, upgrading,

O MANUFACTURING

INSTALLATION ©

and disposing of assets cost-effectively UAMGEOLAANT cmwoms:  rocsmos:
Goal: minimise the total expected life-cycle ﬁﬁ T@
costs and maximise profitability ONSHORE AND OFFSHORE
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» Operate for availability
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Life-cycle of a wind farm. Source: WindEurope, 2020
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Wind Energy Research & Innovation Priorities
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Wind Energy LCOE — O&M

Rotor

o&M

Turbine

Construction Finance

Contingency 1.9% 3.4%

! Tower
Electrical Infrastructure 1.

Assembly and Installation
Engineering
Site Access and Staging

Foundation Project Management

Onshore
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Turbine
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System
Soft Costs 31.5% Substructure & Foundation

Insurance During Construction

Construction Finance

Contingency
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Plant Commissioning
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Source: Stehly et al., NREL, NREL/TP-5000-81209, 2021



O&M of Offshore Wind Farms

10 30 50 70 9% 110 130
Distance from O&M port (NM)

Source: GL Garrad Hassan, A Guide to UK Offshore Wind Operations and Maintenance, Scottish Enterprise and The Crown Estate, 2013



States of a System

Downtime is the time during which a turbine does not produce power

output due to a failure

system operates (available)

system is not operating

A Downtime
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2
?_:
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g
o)
0% -
(Down) \ failure / Time
idle, operation, stand by —

no wind

/

- too much wind
- invoked by operator




Maintenance Strategies
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Immediate

Maintenance

Deferred
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Corrective Maintenance

A
= uptime
7]
Py
ol
©
-
< downtime
>
fime
4 | | | | |
c I I | | I
2 I I I | |
c I I | | I
© I I I | I
I |
failure time

Run to failure and replace (failure-based)
v’ Full use of the asset useful life, avoid unnecessary maintenance
v’ Low criticality (cost and reliability) components

'i"u Delft * Not cost-effective if access is limited (offshore wind farms)
Source: Koukoura et al., Reliab. Eng. Syst. Saf., 2021



Operational Fallure Characteristics
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system fails - Logistical Delays
(weather, vessel and supply chain delays)

system fails - Repair



Maintenance Strategies

repair Immediate

Deferred

Maintenance

Calendar-based

Preventive

service
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Preventive Time-based Maintenance
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Scheduled inspection and replacements to prevent major failures
v’ Asset delivers more predictable and reliable electricity

v" For assets with well-known and consistent failure-time correlation

TUDelft * Potentially expensive and risk of over-maintenance
Source: Koukoura et al., Reliab. Eng. Syst. Saf., 2021



Maintenance Strategies

repair Immediate

Deferred

Maintenance

Calendar-based

Preventive

service
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Preventive CBM
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Extensive condition monitoring of critical component health

v’ Detailed analysis to predict and pre-empt early failures

v’ Plan the most effective maintenance actions on a dynamic schedule
v’ Reduce unnecessary repairs and unplanned downtime
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How to Optimize a CBM Strategy?

Reliability Analysis

» Most critical wind turbine components
» Failure modes and effect analysis (FMEA)

» Failure mode and symptom analysis
(symptoms, fault indicators)

> Detection

A A
Something happened! where?
» Diagnosis

Cost-effective and Holistic Condition Monitoring

What did happen?

> Prognosis
What will happen? When?
Remaining useful lifetime estimation

| L
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Optimisation: O&M feedback, Field data

O&M - Prescriptive actions
Maintenance decision
Optimal maintenance
scheduling




What is Reliability?

* Probability of successful operation
How long will [a sub-assembly] perform its intended function without a breakdown?

]
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What is Reliability?

Reliability is the probability that an item will meet its required
function under stated conditions for a specified period of time

* |t can be expressed as the number of failures over a period of time - Failure rate ()

(Total Number of FailureS)
Turbine Population

A=
Operating Period

 Reliability is essential when designing and operating any engineering system
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Causes of a Failures

e Design failure

* Manufacturing failure

Life Cycle
e Installation failure of wind farm
e Maintenance failure asset

* Operation/Handling failure
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Think, Pair & Share: Wind Turbine Reliability

Sit in pairs and discuss with partner:

» What is the typical reliability of onshore and offshore

wind turbines?

» What is the most unreliable wind turbine component™?
» What is the component causing the longest downtime™?

Mentimeter

Share with everybody

“Refer to the geared wind turbine configuration
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Overall Failure Rates — Onshore vs Offshore
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Source: Dao et al., 2019, Wind Energy, 22(12), 1848-1871
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Fallure Rates & Downtime per Sub-system - Onshore

. L OWMEP Failure Rate, approx 15400

Electrical System Turbine Years, 1993-2006

B LWK Failure Rate, approx 5800 Turbine

I Years, 1993-2006

B Swedish Survey Failure Rate, 3122
Turbine Years, 1997-2005

OWMEP Downtime, approx 15400
Turbine Years, 1993-2006

B LWK Downtime, approx 5800 Turbine
Years, 1993-2006

B Swedish Survey Downtime, 3122
Turbine Years, 1997-2005
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Other

Hydraulic System

Yaw System

Rotor Hub

Mechanical Brake

Rotor Blades
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Generator

Drive Train
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TU Delft Source: Ribrant & Bertling, 2007, IEEE Power Engineering Society General Meeting, 1-8; Tavner et al., 2010, EPE Journal, 20(4), 45-50
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Faillure rates — Onshore vs. Offshore

5.0%
2.5%

Onshore

Offshore

= Blades & hub

= Drivetrain

= Pitch

= Gearbox

= Generator

= Control system
= Yaw

= Hydraulic

= Sensors

= Electrical

]
TU Delft

Source: Dao et al., 2019, Wind Energy, 22(12), 1848-1871
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Downtime — Onshore vs. Offshore

Onshore

Offshore

= Blades & hub
= Drivetrain
= Yaw

= Gearbox
= Generator

%
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Source: Dao et al., 2019, Wind Energy, 22(12), 1848-1871
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Wind Turbine Drivetrain Configurations
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With gearbox

Main bearing(s)

Y

Gearbox Generator

Power converter
Doubly Fed Induction Generator

(DFIG) with partial-power-converter

Main bearing(s)

= Vi

Power converter

Generator
Permanent Magnet Synchronous
Generator (PMSG) with full-power
converter

Source: adapted from Nejad et al., Wind Energ. Sci., 2022



DFIG vs PMSG
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Cost-effective Condition Monitoring

(SCADA, CMS)

|

Information
(Signals, Alarms,
Maintenance logs)

|

|
|
[ Intelligence }
|

[ Sensors

(Fault Detection, Diagnosis
and Prognosis)

|

[ User Reporting

(Asset Manager, O&M Manager,
O&M technician, WT Operator)

=5 ———
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How Are We Doing?

Sensors Information Intelligence
Large choice of Potentially lots of  Some ability to
sensors available.  SCADA and CMS detect faults.
Challenge is to data available. Diagnosis of specific

. : . faults limited.
decide which can Need to filter what o

. . . Prognosis still

provide is and what is not

_ : . difficult.
meaningful signals. suitable. Need

standardisation of
data and reporting.

9/10 7/10 5/10




Conclusions

O&M contributes up to around 34% to the cost of wind energy

CBM minimizes O&M costs =2 reducing inspection visits and corrective maintenance actions

ﬁeliability data is essential to identify the most critical components and perform failure mode \
and symptom analysis.

Reliability studies show variation, however, generally...

* Offshore: greater failure rates and downtime than onshore
— severe offshore operating environment
—> difficulty in repair/maintenance accessibility

= Electrical systems have highest failure rate
{Generators and gearboxes contribute most to downtime j

[Advanced monitoring techniques, using existing SCADA and CMS data, are essential for effective CBM ]
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Thank you for your attention

Any questions?

Donatella Zappala - D.Zappala@tudelft.nl




