Wind Farm Maintenance

Donatella Zappalá
Faculty of Aerospace Engineering – Wind Energy Section
D.Zappala@tudelft.nl

TWIND course - Design and testing of offshore wind turbines and farms Thursday 20th October 2022

Outline

1	Wind Energy Overview
2	Wind Farm Asset Management
3	O&M: Maintenance Strategies
4	Wind Turbine Reliability: Case Studies
5	Condition Monitoring
6	Conclusions

Wind Energy Today - Europe

Wind Energy Today - Europe

LCOE [EUR/MWh]

Note: Offshore wind includes grid connection costs of EUR 14/MWh

Source: Roland Berger, 2021

European Green Deal

- All the energy used will come from renewable sources by 2050
- Offshore wind energy is <u>THE</u> key player in meeting the net-zero carbon emission target
- ➤ The European Commission has proposed to increase Europe's offshore wind capacity from the current 28 GW up to 450 GW by 2050
- One third of offshore wind capacity is expected to be generated by floating wind turbines in deep waters (>50m)

Wind Energy Cost Reduction 2020-2050

Wind Farm Asset Management

Asset management is a systematic process of deploying, operating, maintaining, upgrading, and disposing of assets cost-effectively

Goal: minimise the total expected life-cycle costs and maximise profitability

- Design for availability
- Operate for availability
- Maintain for availability

- a. Resource assessments, environmental impact, landscape, archaeological and unexploded ordnance (UXO) assessments.
- b. Hub, pitch, blades, nacelle, gearbox, bearings, forgings, cast ngs, generator, converter and tower.
- . Onshore foundat ons, intra-array cabling, substat on, of shore foundat on, subsea export cabling, converter, and transformer stat ons.
- Onshore and of shore foundations.
- e. Ports, warehouses, road transportat on and vessels

Life-cycle of a wind farm. Source: WindEurope, 2020

Wind Energy Research & Innovation Priorities

Wind Energy LCOE – O&M

O&M of Offshore Wind Farms

States of a System

Downtime is the time during which a turbine does not produce power output due to a failure

Maintenance Strategies

Corrective Maintenance

Run to failure and replace (failure-based)

- ✓ Full use of the asset useful life, avoid unnecessary maintenance
- ✓ Low criticality (cost and reliability) components

Operational Failure Characteristics

Maintenance Strategies

Preventive Time-based Maintenance

Scheduled inspection and replacements to prevent major failures

- ✓ Asset delivers more predictable and reliable electricity
- ✓ For assets with well-known and consistent failure-time correlation

> Potentially expensive and risk of over-maintenance

Maintenance Strategies

Preventive CBM

Extensive condition monitoring of critical component health

- ✓ Detailed analysis to predict and pre-empt early failures
- ✓ Plan the most effective maintenance actions on a dynamic schedule
- ✓ Reduce unnecessary repairs and unplanned downtime
- ✓ Improve asset availability and performance

How to Optimize a CBM Strategy?

Reliability Analysis

- Most critical wind turbine components
- Failure modes and effect analysis (FMEA)

Failure mode and symptom analysis (symptoms, fault indicators)

Cost-effective and Holistic Condition Monitoring

Detection

Something happened! where?

Diagnosis

What did happen?

Prognosis

What will happen? When?

Remaining useful lifetime estimation

Maintenance decision Optimal maintenance scheduling

Optimisation: O&M feedback, Field data

What is Reliability?

• Probability of successful operation

How long will [a sub-assembly] perform its intended function without a breakdown?

What is Reliability?

Reliability is the probability that an item will meet its required function under stated conditions for a specified period of time

• It can be expressed as the number of failures over a period of time - Failure rate (λ)

$$\lambda = \frac{\left(\frac{\text{Total Number of Failures}}{\text{Turbine Population}}\right)}{\text{Operating Period}}$$

Reliability is essential when designing and operating any engineering system

Causes of a Failures

- **Design** failure
- Manufacturing failure
- Installation failure
- Maintenance failure
- Operation/Handling failure

Life Cycle of wind farm asset

Think, Pair & Share: Wind Turbine Reliability

	 Sit in pairs and discuss with partner: What is the typical reliability of onshore and offshore wind turbines? What is the most unreliable wind turbine component*? What is the component causing the longest downtime*? 	3 min
Mentimeter	Share with everybody	3 min

^{*}Refer to the geared wind turbine configuration

Overall Failure Rates – Onshore vs Offshore

Source: Dao et al., 2019, Wind Energy, 22(12), 1848-1871

Failure Rates & Downtime per Sub-system - Onshore

Source: Ribrant & Bertling, 2007, IEEE Power Engineering Society General Meeting, 1-8; Tavner et al., 2010, EPE Journal, 20(4), 45-50

Failure rates – Onshore vs. Offshore

Source: Dao et al., 2019, Wind Energy, 22(12), 1848-1871

Downtime – Onshore vs. Offshore

Wind Turbine Drivetrain Configurations

Doubly Fed Induction Generator (DFIG) with partial-power-converter

Permanent Magnet Synchronous Generator (PMSG) with full-power converter

DFIG vs PMSG

Cost-effective Condition Monitoring

How Are We Doing?

Sensors	Information	Intelligence	User Reporting
Large choice of sensors available. Challenge is to decide which can provide meaningful signals.	Potentially lots of SCADA and CMS data available. Need to filter what is and what is not suitable. Need standardisation of data and reporting.	Some ability to detect faults. Diagnosis of specific faults limited. Prognosis still difficult.	Difficult to interpret some of the intelligence. No real demarcation of reporting depending on user requirements. Danger that users are 'swamped' with unnecessary information.
9/10	7/10	5/10	2/10

Conclusions

O&M contributes up to around 34% to the cost of wind energy

CBM minimizes O&M costs \rightarrow reducing inspection visits and corrective maintenance actions

Reliability data is essential to identify the most critical components and perform failure mode and symptom analysis.

Reliability studies show variation, however, generally...

- Offshore: greater failure rates and downtime than onshore
 - → severe offshore operating environment
 - → difficulty in repair/maintenance accessibility
- Electrical systems have highest failure rate
- Generators and gearboxes contribute most to downtime

Advanced monitoring techniques, using existing SCADA and CMS data, are essential for effective CBM

Thank you for your attention Any questions?

Donatella Zappalá - D.Zappala@tudelft.nl

