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Motivation for Floating Offshore Wind

• Better resource potential for offshore wind

• Space for bottom-founded OWT becomes scarce

Source: Global Wind Atlas

https://www.noordzeeloket.nl/en/up-date-atlas/

Ample space?
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Usage of the North Sea
Shipping intensity Fishing intensity Cables & Pipelines

https://www.noordzeeloket.nl/en/up-date-atlas/#canvas
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Most Waters are Deeper than 60 m!

Source: Global Wind Atlas
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How to go Floating?

This Photo by Unknown Author is licensed under CC BY
This Photo by Unknown Author is licensed under CC BY

https://www.hindawi.com/journals/tswj/2014/840283/
https://creativecommons.org/licenses/by/3.0/
https://courses.lumenlearning.com/physics/chapter/introduction-12/
https://creativecommons.org/licenses/by/3.0/
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Reference Sheet Floater Motions

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

Index Motion 

name

Common 

symbol

𝒙𝒊-
Notation

1 Surge 𝑥 𝑥1

2 Sway 𝑦 𝑥2

3 Heave 𝑧 𝑥3

4 Roll 𝜑 𝑥4

5 Pitch Θ 𝑥5

6 Yaw 𝜓 𝑥6
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Motions and Loading 3D Floater

• Mass-Spring-Damper system: RAO → Connection of excitation and response

• 𝑚 ሷ𝑧 + 𝑏 ሶ𝑧 + 𝑐 𝑧 = 𝐹𝑎𝑒
−𝑖𝜔𝑡 𝑧 = 𝑧𝑎𝑒

−𝑖 𝜔𝑡+𝜖

• 6 dof equation of motion

➔RAOs and phase angles of floater motion
Note: In this course, mass moment of inertia is expressed as 𝐽 to avoid confusion with area moment of inertia (commonly 𝐼)

𝑧𝑎
𝐹𝑎
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Challenges of Floating Offshore Wind Turbines

• Buoyancy

• Stability

• Wave-induced motions (of the complete aero-servo-elasto-hydrodynamic system)

• Station keeping

• Installation

• Energy export, i.e. dynamic cables (not covered in this lecture)
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Buoyancy

Basic Archimedes

• 𝐹𝐵 = 𝐹𝐺
• 𝐹𝐵 = 𝜌𝑔∇

• ∇ - displaced water volume, i.e. displacement

• 𝐹𝐺 - weight of the structure
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Stability

• In floating structures terms

The capability of a floating structure to resist an inclining 

moment
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Righting Moment
• Wind force 𝐹𝑤 → inclining moment 𝑀𝑘 = 𝐹𝑤 ⋅ 𝐻ℎ𝑢𝑏 ⋅ cos 𝜃

• Pitch angle 𝜃 > 0 from equilibrium at 𝜃 = 0

• Geometry change of displaced water volume

• Center of Buoyancy moves from 𝐵0 to 𝐵

• New working line of buoyancy force FB

• Weight 𝐹𝐺 and buoancy 𝐹𝐵 equally large and opposite

• 𝐹𝐵 and 𝐹𝐺 in parallel with distance 𝐺𝑍

→ Righting moment 𝑀𝑠𝑡

𝐾

𝐵0

𝐺

𝐵

𝐹𝐵

𝐹𝐺

𝑍

𝜃

𝑀𝑠𝑡

𝑀

𝜃

𝑀𝑠𝑡 = 𝜌𝑔∇ ⋅ 𝐺𝑍

𝐹𝑤

𝑀𝑘

𝐺𝑍 = 𝐺𝑀 ⋅ sin 𝜃

𝐺𝑀 = 𝐾𝐵 + 𝐵𝑀 − 𝐾𝐺

𝐵𝑀 =
𝐼𝑤𝑝

∇

Righting arm

Metacentric height

Metacentric radius 𝐼𝑤𝑝 - area moment of inertia 

of waterplane area

𝑀𝑠𝑡 = 𝑀𝑘

𝐻ℎ𝑢𝑏
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Hydrostatic Stiffness

• Stiffness: Change of restoring force related to corresponding 

displacement 𝑐𝑥 =
𝑑𝐹𝑥

𝑑𝑥

• Pitch righting moment 𝑀𝑠𝑡 = 𝜌𝑔∇ ⋅ 𝐺𝑍 = 𝜌𝑔∇ ⋅ 𝐺𝑀 sin 𝜃

• 𝑐𝜃 = 𝑐55 =
𝑑𝑀𝑠𝑡

𝑑𝜃
= 𝜌𝑔∇ ⋅ 𝐺𝑀 cos 𝜃 ≈ 𝜌𝑔∇ ⋅ 𝐺𝑀 for small angles

• Heave restoring force

• Change in buoyancy due to heave motion

• 𝑐𝑧 = 𝑐33 =
𝑑𝐹𝐵

𝑑𝑧
= 𝜌𝑔

𝑑

𝑑𝑧
∇0 + 𝐴𝑤𝑙 ⋅ 𝑧 = 𝜌𝑔𝐴𝑤𝑙 𝐴_𝑤𝑙 – waterplane area
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Natural Frequencies of Floating Bodies

• 𝜔𝑛 =
𝑐

𝑚

• Floating bodies → inertia of surrounding water to be included 

→ added mass (and added moments of inertia) 𝑚 → 𝑚𝑑𝑟𝑦 + 𝑎
calculated by diffraction software, e.g. WAMIT, NEMOH, DIFFRAC, AQWA

• Added mass depends on frequency and motion direction!

• 𝜔ℎ𝑒𝑎𝑣𝑒 =
𝑐33

𝑚+𝑎33
=

𝜌𝑔𝐴𝑤𝑙

𝑚+𝑎33

• 𝜔𝑝𝑖𝑡𝑐ℎ =
𝑐55

𝐽𝑦𝑦+𝑎33
=

𝜌𝑔∇ 𝐺𝑀

𝐽𝑦𝑦+𝑎55

𝑐 – stiffness

𝑚 – mass (inertia)

Waterplane area

Function of waterplane area, KG, KB, and ∇
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Irregular Wind Waves

• apparently irregular

• but can be considered as a

superposition of a finite number

of regular waves

• each regular having own frequency,

amplitude and propagation direction
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Wave Excitation Forces

• Calculated by diffraction software and/or Morison equation

• Depending on wave frequency and direction

• Per frequency expressed by force RAO (regular, monochromatic waves)

• Irregular waves → interaction between wave components of 

different frequency

→ (Sum and) difference frequency terms → low-frequency 

excitation (→ Quadratic Transfer Functions (QTF))

→Mooring

Large-volume structure Hydrodynamically transparent
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Floater response

Heave natural
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Floater design

→ Avoid wave frequencies

with Floater natural frequencies!
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Response Depends on Input Sea State

• Different response spectra for sea state with different peak period

• Remember, the RAOs are only dependent on the system itself and the 

wave direction.

➔ Per wave spectrum peak period different limiting significant wave height! 
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Wave Scatter Table

Marginal probability of Tp Marginal probability of Hs

Joint probability of Hs and Tp
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Operability
On basis of limiting wave heights, assess in which percentage of time the operation 

is possible. → Sum of wave occurrence below the limit curves.
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Different Floater Concepts
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Floater Stability
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Mooring Systems

Floating Offshore Wind Turbines

This Photo by Unknown Author is licensed under CC BY

Floating Wind Turbine
Master thesis Youri Metsch

https://www.hindawi.com/journals/tswj/2013/357849/abs/
https://creativecommons.org/licenses/by/3.0/
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Mooring System – Load-Excursion Curve
• The static load-excursion curve defines the basic mooring characteristics

• Typically a non-linear curve for catenary moorings and a more linear curve for 

taut-mooring polyester systems
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Mooring Line – Tension-Elongation Curve 
• Material properties of steel (chain and wire) is (more) linear, but the 

resultant catenary shape of the mooring line results in the non-linear 

load-excursion curve → Bottom chain lift

• Versus, the non-linear line stiffness of polyester, which can results in a 

linear load-excursion curve

Catenary system

• stiffness from weight and lift of 

bottom chain

Taut-mooring system

• stiffness from elasticity of the 

mooring line

BL – breaking load
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Load-Excursion Curve – Risers (Power Cables)

• To include the effect of cables without any computational effort, the calculated static load-

excursion curve from the cable system alone can be used as external-force input to the 

mooring system. 

• Many different cable configurations: Coupled and Decoupled. Inspired by Offshore O&G

• Note: Cables are not designed to withstand mooring loads

→ much smaller horizontal forces than mooring lines
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Moored Floater Response - Dynamics 

• Mass-spring system for dynamic motions

• Consider 1-DOF surge motion equation, uncoupled

• Natural period of the mooring system
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Moored Floater Response 
• First order wave loads (Froude-Krylov & diffraction) are large! 

• Target for the mooring design: avoid these forces

→ Create a mooring system such that the natural period is outside the wave 

excitation by at least a factor 4 to 5, to avoid direct wave excitation. 

Typical mooring natural 

period 𝑇 = 100 s

𝜔 =
2𝜋

𝑇
= 0.0628 rad/s

But: Irregular waves also have 

low-frequency excitation!
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Low-Frequency Wave Excitation 
• Discussed in Motions and Loading MT44020 – Part 2

• Wave drift = Second order force

• Result of pressure integration on the mean wetted hull, accounting for 

perturbation of pressure, motions, wet/dry in splash zone

• First order pressures in regular waves

→ resultant force over one oscillation ≠ 0

→ mean second order wave drift force → Quadratic Transfer Function (QTF)

This will only lead to a mean offset of the floater in the mooring system

• Irregular wave concept

• Summation of two waves with nearly the same frequency will give a signal beat 

with a low frequent component (and a high frequent component)

• Low wave frequency leads to low-frequency wave load → mooring excitation 
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Low-Frequency Response

• Beating pattern in wave 

elevation

• Variation in wave loads 

and response

PhD thesis Pinkster: Low frequency surge 

motion of moored LNG carrier in irregular head 

seas, http://resolver.tudelft.nl/uuid:d6d42e9c-

c349-47e5-8d63-5c6454196b04

http://resolver.tudelft.nl/uuid:d6d42e9c-c349-47e5-8d63-5c6454196b04
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Moored Floater Response – Damping
• Problem: at very long oscillation periods (in this example above 40 sec) 

there is hardly any wave radiation damping

Wave Period in s

Wave Period in s Very low damping at long wave periods!
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Damping Sources for Low-Frequency Motions 

Main sources for low-frequency damping

• Viscous damping on the hull (friction) 

• Wave drift damping 

• Mooring line damping, including bottom friction 

• Only fully empirical or semi-analytical formulations; application is 

limited and needs validation 

• Viscous damping

• Modelled together with current loads. Based on relative fluid velocity 

• Wave drift damping (relating wave drift force to slow floater motion)

• Obtained from drift forces and their derivatives 

• Mooring line damping

• Can be estimated based on line dynamics and drag formulations

• Damping included in dynamic mooring analysis (time domain)
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Environmental Load Components 
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Installation

Port Assembly and Tow-out

• Floater and turbine assembled at

quay-side

• Towed to location

• Moored in place

Requires

→ (very) deep-water port

→ Floater stability in towed condition

On-site Assembly

• Floater and turbine assembled at

offshore location

• Floater towed to location and 

moored

• Tower and RNA installed later

Requires

→ High lifting capacity crane vessel

→ Floating to floating installation
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Model Testing – Ongoing MSc thesis

Figure 1: Impression of forces and response on a FOWT.
From: Pegalajar-Jurado, A., Borg, M., and Bredmose, H.: An efficient 
frequency-domain model for quick load analysis of floating offshore wind 
turbines, Wind Energ. Sci., 3, 693–712, https://doi.org/10.5194/wes-3-693-
2018, 2018, licensed under CC. BY.

https://creativecommons.org/licenses/by/3.0/
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Reading Material
• Journée, JMJ, Massie, WW, Huijsmans, RHM (2015). Offshore 

Hydromechanics, 3rd edition.

• Holthuijsen, LH (2007). Waves in Oceanic and Coastal Waters. → e-book 

available via TU Delft Library: 

https://tudelft.on.worldcat.org/search?queryString=%22Waves+in+Oceanic+an

d+Coastal+Waters%22#/oclc/663973262 or

• https://app-knovel-

com.tudelft.idm.oclc.org/web/toc.v/cid:kpWOCW0002/viewerType:toc//root_slug

:waves-in-oceanic?kpromoter=marc

• Ma, K-T, Luo, Y, Kwan, T, Wu, Y (2019). Mooring System Engineering for 

Offshore Structures. → available via Science Direct: 

https://www.sciencedirect.com/book/9780128185513/mooring-system-

engineering-for-offshore-structures

https://tudelft.on.worldcat.org/search?queryString=%22Waves+in+Oceanic+and+Coastal+Waters%22#/oclc/663973262
https://app-knovel-com.tudelft.idm.oclc.org/web/toc.v/cid:kpWOCW0002/viewerType:toc/root_slug:waves-in-oceanic?kpromoter=marc
https://www.sciencedirect.com/book/9780128185513/mooring-system-engineering-for-offshore-structures

