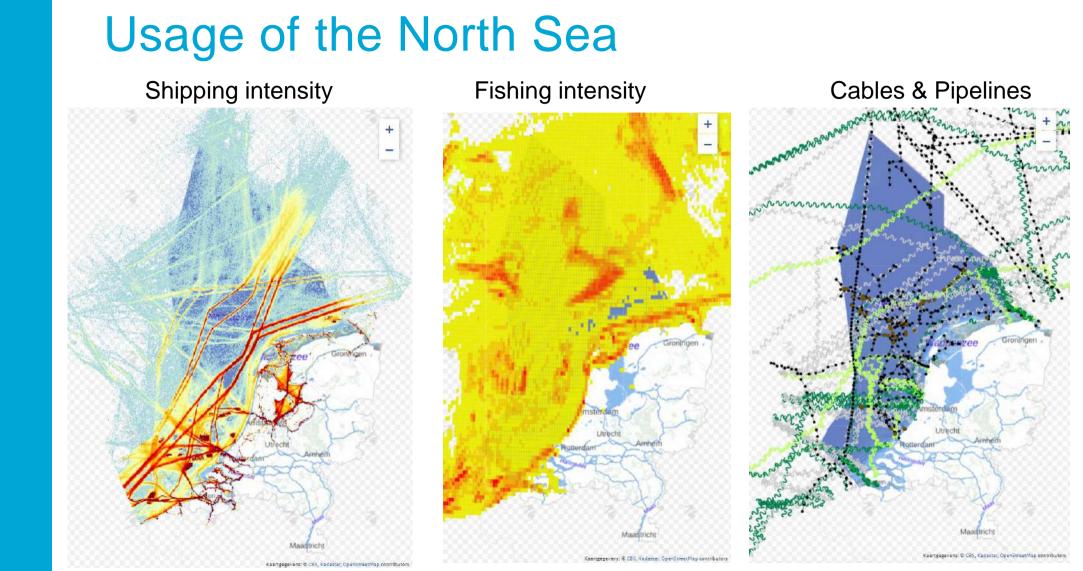

Floating Substructures & Moorings for Floating Offshore Wind Turbines

Sebastian Schreier Assist. Prof. Ship Hydromechanics Faculty 3mE, Dept. M&TT Room 34-D-0-260 (Towing Tank) <u>s.schreier@tudelft.nl</u>

TUDelft

Motivation for Floating Offshore Wind

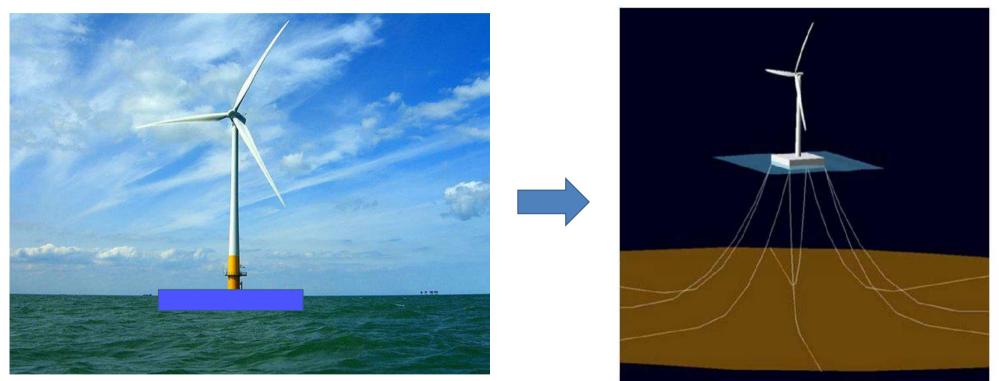

- Better resource potential for offshore wind
- Space for bottom-founded OWT becomes scarce

Source: Global Wind Atlas

19.10.2022 | TWIND 2022 | Floating Substructures & Moorings | Sebastian Schreier

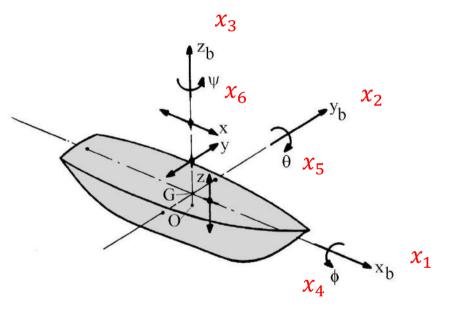
Delft

https://www.noordzeeloket.nl/en/up-date-atlas/#canvas



Most Waters are Deeper than 60 m!

How to go Floating?


This Photo by Unknown Author is licensed under CC BY

This Photo by Unknown Author is licensed under CC BY

Reference Sheet Floater Motions

Index	Motion name	Common symbol	<i>x_i-</i> Notation
1	Surge	x	<i>x</i> ₁
2	Sway	у	<i>x</i> ₂
3	Heave	Z	<i>x</i> ₃
4	Roll	arphi	x_4
5	Pitch	Θ	<i>x</i> ₅
6	Yaw	ψ	<i>x</i> ₆

19.10.2022 | TWIND 2022 | Floating Substructures & Moorings | Sebastian Schreier

Motions and Loading 3D Floater

• Mass-Spring-Damper system: RAO \rightarrow Connection of excitation and response

•
$$m \ddot{z} + b \dot{z} + c z = F_a e^{-i\omega t}$$

 $\frac{Z_a}{F_a} = \frac{1}{\sqrt{(c - m\omega^2)^2 + b^2\omega^2}}$
 $Z = z_a e^{-i(\omega t + \epsilon)}$
 $\frac{Z_a}{F_a} \to RAO$ $\epsilon = \operatorname{atan}\left(\frac{-b\omega}{c - m\omega^2}\right)$
 $F_a = F(\zeta_a)$ $m \to m + a$ ζ_a $m \to m + a$

• 6 dof equation of motion

 $M + a_{11}$ *a*₁₃ *a*₁₄ a₁₅ *a*₁₆ a_{12} c_{11} c_{12} c_{13} c_{14} c_{15} c_{16} F_X F_Y F_z M_X M+a₂₂ Υ Ż φ a₂₅ c_{21} c_{22} c_{23} c_{24} c_{25} c_{26} a₂₄ a₂₃ a₂₆ b_{21} a_{21} γ Ζ φ $M + a_{33}$ a₃₅ Ï c_{33} c_{34} c_{35} a_{31} a₃₂ a₃₆ b₃₅ b₃₆ D_{31} *c*₃₆ $c_{41} \ c_{42} \ c_{43} \ c_{44} \ c_{45} \ c_{46}$ a₄₅ a₄₆ a₄₂ *b*₄₁ a₄₁ a₄₃ θ M_{y} *c*₅₂ *c*₅₃ *c*₅₄ *c*₅₅ *c*₅₆ a₅₂ a₅₃ *a*₅₄ $I_{yy} + a_{55}$ a₅₆ b_{52} b_{53} b_{54} b_{55} b_{56} a₅₁ *b*51 W/ c_{61} c_{62} c_{63} c_{64} c_{65} c_{66} note M_Z a₆₃ $I_{ZZ} + a_{66}$ a₆₂ *a*₆₅ a_{61} D_{61}

→ RAOs and phase angles of floater motion

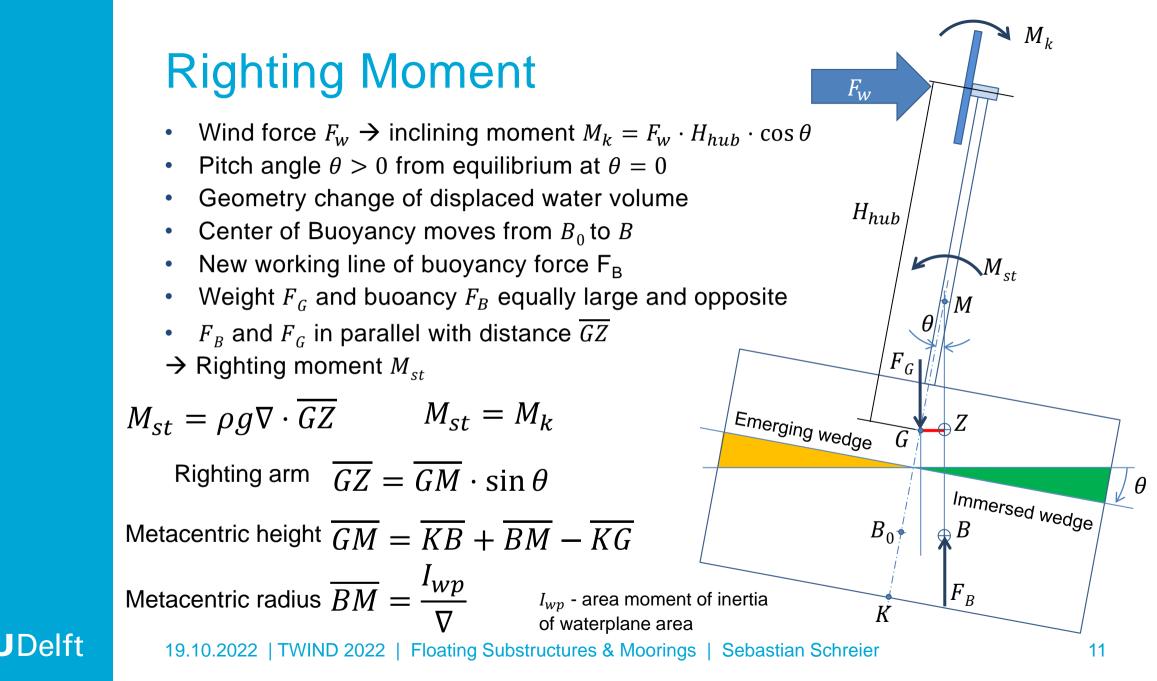
Note: In this course, mass moment of inertia is expressed as J to avoid confusion with area moment of inertia (commonly I)

Challenges of Floating Offshore Wind Turbines

- Buoyancy
- Stability
- Wave-induced motions (of the complete aero-servo-elasto-hydrodynamic system)
- Station keeping
- Installation
- Energy export, i.e. dynamic cables (not covered in this lecture)

Buoyancy

Basic Archimedes


• $F_B = F_G$

Delft

- $F_B = \rho g \nabla$
- ∇ displaced water volume, i.e. displacement
- F_G weight of the structure

Stability

 In floating structures terms The capability of a floating structure to resist an inclining moment

Hydrostatic Stiffness

- Stiffness: Change of restoring force related to corresponding displacement $c_x = \frac{dF_x}{dx}$
- Pitch righting moment $M_{st} = \rho g \nabla \cdot \overline{GZ} = \rho g \nabla \cdot \overline{GM} \sin \theta$

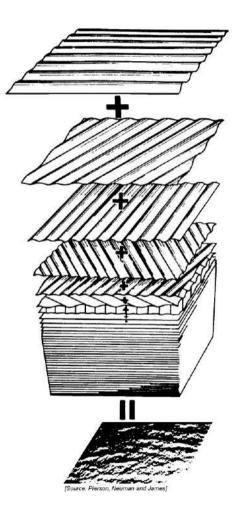
•
$$c_{\theta} = c_{55} = \frac{dM_{st}}{d\theta} = \rho g \nabla \cdot \overline{GM} \cos \theta \approx \rho g \nabla \cdot \overline{GM}$$
 for small angles

- Heave restoring force
- Change in buoyancy due to heave motion

•
$$c_z = c_{33} = \frac{dF_B}{dz} = \rho g \frac{d}{dz} (\nabla_0 + A_{wl} \cdot z) = \rho g A_{wl}$$
 A_wl - waterplane area

Natural Frequencies of Floating Bodies

•
$$\omega_n = \sqrt{\frac{c}{m}}$$
 $c - \text{stiffness}$
 $m - \text{mass (inertia)}$

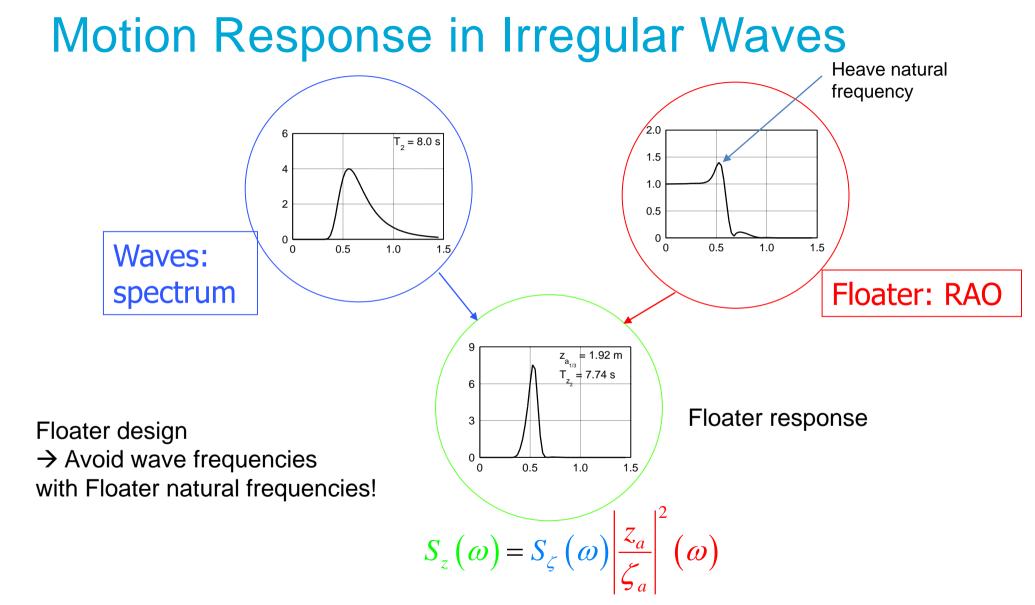

- Floating bodies \rightarrow inertia of surrounding water to be included \rightarrow added mass (and added moments of inertia) $m \rightarrow m_{dry} + a$ calculated by diffraction software, e.g. WAMIT, NEMOH, DIFFRAC, AQWA
- Added mass depends on frequency and motion direction!

•
$$\omega_{heave} = \sqrt{\frac{c_{33}}{m + a_{33}}} = \sqrt{\frac{\rho g A_{wl}}{m + a_{33}}}$$
 Waterplane area
• $\omega_{pitch} = \sqrt{\frac{c_{55}}{J_{yy} + a_{33}}} = \sqrt{\frac{\rho g \nabla \overline{GM}}{J_{yy} + a_{55}}}$ Function of waterplane area, KG, KB, and ∇
• $\omega_{pitch} = \sqrt{\frac{c_{55}}{J_{yy} + a_{33}}} = \sqrt{\frac{\rho g \nabla \overline{GM}}{J_{yy} + a_{55}}}$ Function of waterplane area, KG, KB, and ∇
• 19.10.2022 | TWIND 2022 | Floating Substructures & Moorings | Sebastian Schreier 13

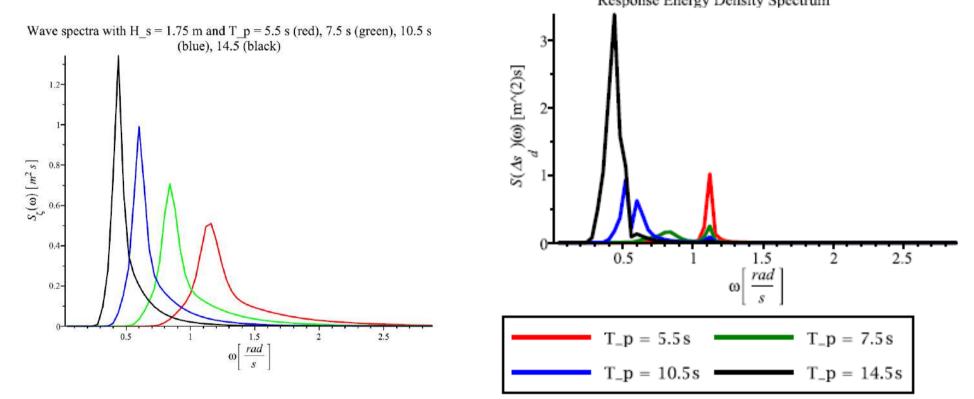
TUDelft

Irregular Wind Waves

- apparently irregular
- but can be considered as a superposition of a finite number of regular waves
- each regular having own frequency, amplitude and propagation direction



Wave Excitation Forces


- Calculated by diffraction software and/or Morison equation
 Large-volume structure
 Hydrodynamically transparent
- Depending on wave frequency and direction
- Per frequency expressed by force RAO (regular, monochromatic waves)
- Irregular waves → interaction between wave components of different frequency
- → (Sum and) <u>difference</u> frequency terms → low-frequency excitation (→ Quadratic Transfer Functions (QTF))
- \rightarrow Mooring

TUDelft

Response Depends on Input Sea State

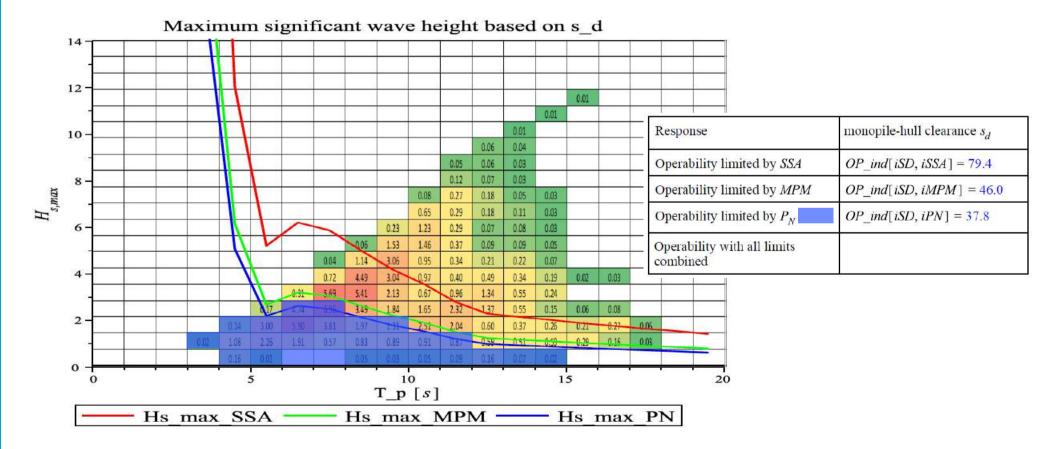
- Different response spectra for sea state with different peak period
- Remember, the RAOs are only dependent on the system itself and the wave direction.

→ Per wave spectrum peak period different limiting significant wave height!
19.10.2022 | TWIND 2022 | Floating Substructures & Moorings | Sebastian Schreier

Wave Scatter Table

Joint probability of Hs and Tp

Marginal probability of Tp


Marginal probability of Hs

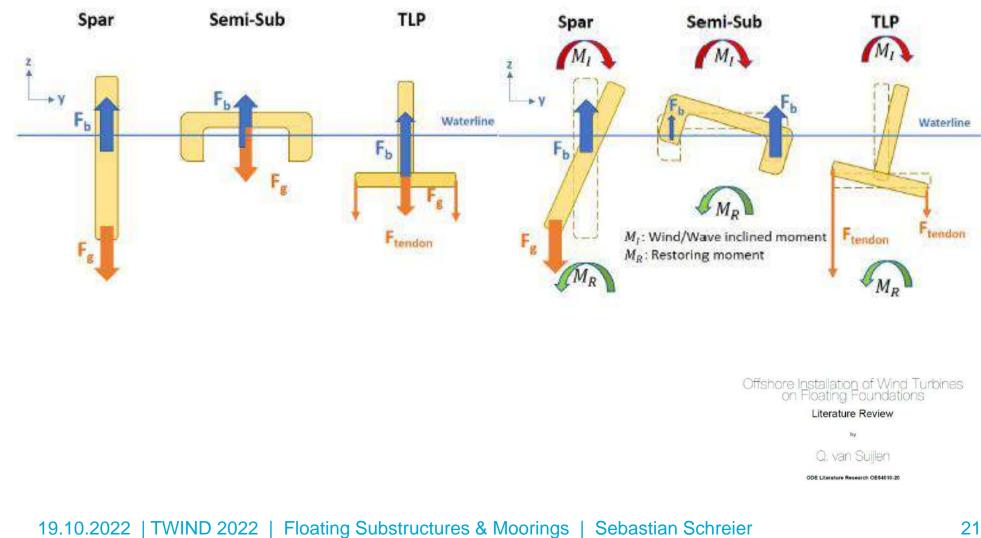
	ave scatter ta								\														
Source: https://www.imarest.org/reports/650-metocean-procedures-guide/file																							
I MarEST, 20	IMarEST, 2018. Metocean Procedure Guide for Offshore Renewables																						
Hs min/m	Hs max/m	Hs mid/m	0	0	0	0.02	1.38	5.45	12.86	17.79	17.44	14.06	11.13	8.41	5.47	3.05	1.67	0.59	0.54	0.09	0	0	99.95
13.3	14	13.65																					0
12.6	13.3	12.95																					0
11.9	12.6	12.25																					0
11.2	11.9	11.55																0.01					0.01
10.5	11.2	10.85															0.01						0.01
9.8	10.5	10.15														0.01							0.01
9.1	9.8	9.45													0.06	0.04							0.10
8.4	9.1	8.75												0.05	0.06	0.03							0.14
7.7	8.4	8.05												0.12	0.07	0.03							0.22
7	7.7	7.35											0.08	0.27	0.18	0.05	0.03						0.61
6.3	7	6.65											0.65	0.29	0.18	0.11	0.03						1.26
5.6	6.3	5.95										0.23	1.23	0.29	0.07	0.08	0.03						1.93
4.9	5.6	5.25									0.06	1.53	1.46	0.37	0.09	0.09	0.05						3.65
4.2	4.9	4.55								0.04	1.14	3.06	0.95	0.34	0.21	0.22	0.07						6.03
3.5	4.2	3.85								0.72	4.49	3.04	0.97	0.40	0.49	0.34	0.19	0.02	0.03				10.69
2.8	3.5	3.15							0.31	5.69	5.41	2.13	0.67	0.96	1.34	0.55	0.24						17.30
2.1	2.8	2.45						0.17	4.74	6.96	3.49	1.84	1.65	2.32	1.37	0.55	0.15	0.06	0.08				23.38
1.4	2.1	1.75					0.14	3.00	5.90	3.81	1.97	1.31	2.51	2.04	0.60	0.37	0.26	0.21	0.27	0.06			22.45
0.7	1.4	1.05				0.02	1.08	2.26	1.91	0.57	0.83	0.89	0.91	0.87	0.59	0.51	0.59	0.29	0.16	0.03			11.51
0	0.7	0.35					0.16	0.02			0.05	0.03	0.05	0.09	0.16	0.07	0.02						0.65
Tp mid/s			0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5	16.5	17.5	18.5	19.5	
Tp min/s			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Total
Tp max/s			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

Operability

On basis of limiting wave heights, assess in which percentage of time the operation is possible. \rightarrow Sum of wave occurrence below the limit curves.

TUDelft

Different Floater Concepts


Figure 2.5: The three floater foundation concepts. Spar-buoy (Spar), Semi-submersible (Semi-Sub) and Tension Leg Platform (TLP) [22]

TUDelft

[22] B. Speer, D. Keyser, and S. Tegen. Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios Strategic Partnership Project Report. 2015. URL: http://www.boem.gov/Pacific-Completed-Studies/..

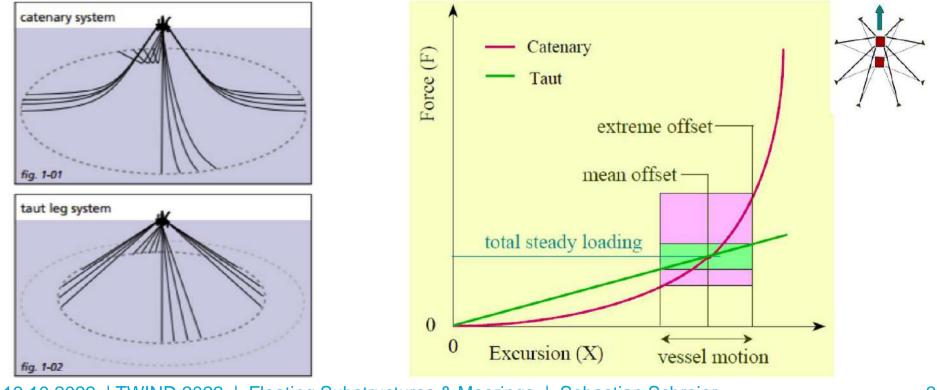
Floater Stability

ŤUDelft


Mooring Systems

Floating Offshore Wind Turbines

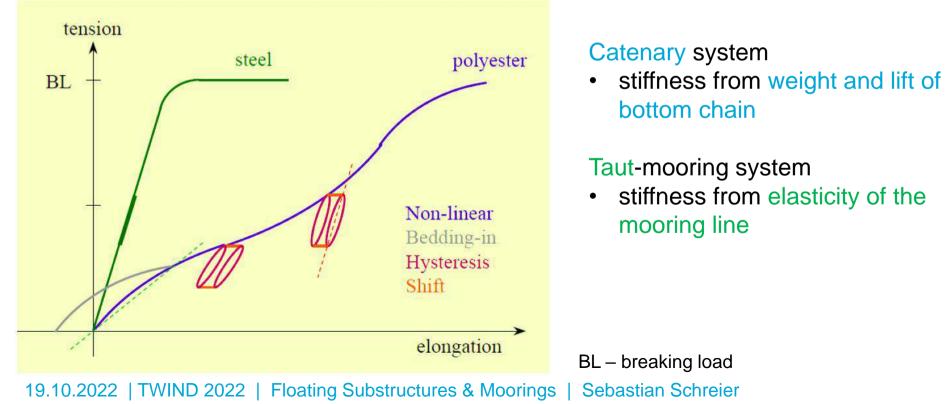
This Photo by Unknown Author is licensed under CC BY


Floating Wind Turbine Master thesis Youri Metsch

ŤUDelft

Mooring System – Load-Excursion Curve

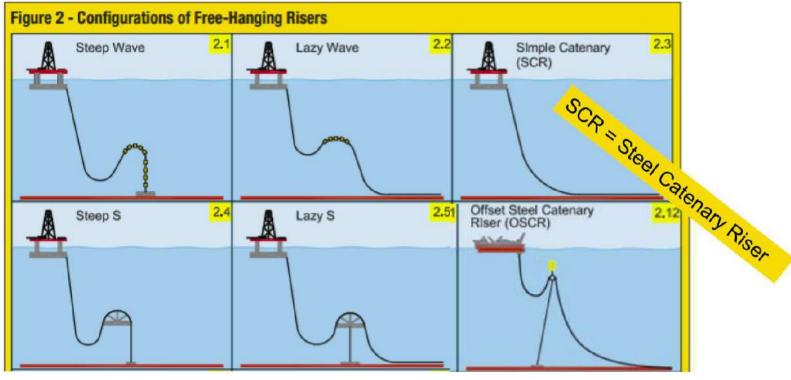
- The static load-excursion curve defines the basic mooring characteristics
- Typically a non-linear curve for catenary moorings and a more linear curve for taut-mooring polyester systems



ŤUDelft

19.10.2022 | TWIND 2022 | Floating Substructures & Moorings | Sebastian Schreier

Mooring Line – Tension-Elongation Curve


- Material properties of steel (chain and wire) is (more) linear, but the resultant catenary shape of the mooring line results in the non-linear load-excursion curve → Bottom chain lift
- Versus, the non-linear line stiffness of polyester, which can results in a linear load-excursion curve

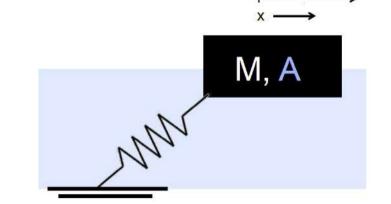
elft

Load-Excursion Curve – Risers (Power Cables)

- To include the effect of cables without any computational effort, the calculated static loadexcursion curve from the cable system alone can be used as external-force input to the mooring system.
- Many different cable configurations: Coupled and Decoupled. Inspired by Offshore O&G
- Note: Cables are not designed to withstand mooring loads
 → much smaller horizontal forces than mooring lines

Moored Floater Response - Dynamics

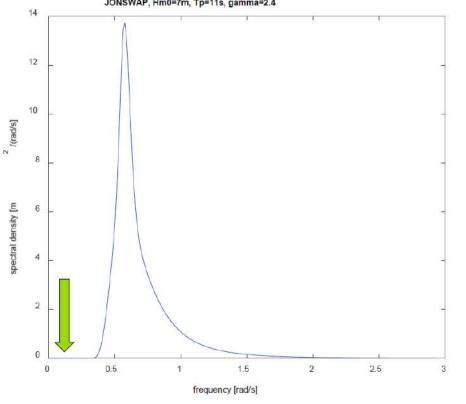
• Mass-spring system for dynamic motions


$$\vec{F}_{ext} = \mathbf{M}_{floater} \vec{\ddot{x}} + \mathbf{C}_{mooring} \vec{x}$$

• Consider 1-DOF surge motion equation, uncoupled

$$F_1 = (M + A_{11})_{floater} \ddot{x}_1 + C_{11,mooring} x_1$$

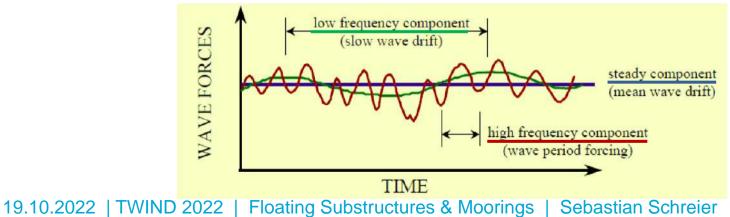
• Natural period of the mooring system


$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{(M + A_{11})_{floater}}{C_{11,mooring}}}$$

Moored Floater Response

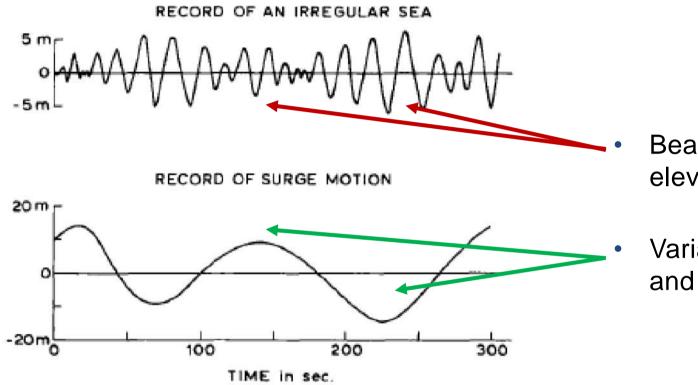
- First order wave loads (Froude-Krylov & diffraction) are large!
- Target for the mooring design: avoid these forces
- → Create a mooring system such that the natural period is outside the wave excitation by at least a factor 4 to 5, to avoid direct wave excitation.

Typical mooring natural period T = 100 s


$$\omega = \frac{2\pi}{T} = 0.0628 \text{ rad/s}$$

But: Irregular waves also have low-frequency excitation!

ŤUDelft

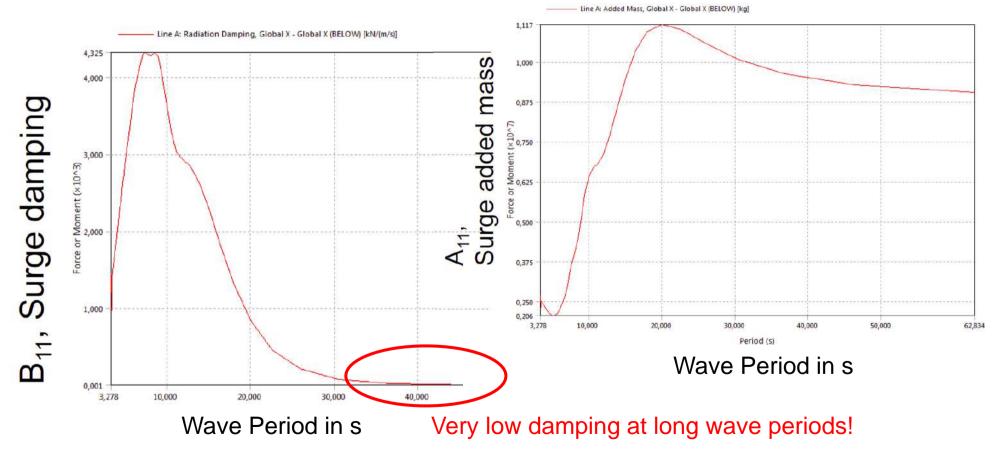

Low-Frequency Wave Excitation

- Discussed in Motions and Loading MT44020 Part 2
- Wave drift = Second order force
 - Result of pressure integration on the mean wetted hull, accounting for perturbation of pressure, motions, wet/dry in splash zone
 - First order pressures in regular waves
 - \rightarrow resultant force over one oscillation $\neq 0$
 - \rightarrow mean second order wave drift force \rightarrow Quadratic Transfer Function (QTF) This will only lead to a mean offset of the floater in the mooring system
- Irregular wave concept
 - Summation of two waves with nearly the same frequency will give a signal beat with a low frequent component (and a high frequent component)
 - Low wave frequency leads to low-frequency wave load → mooring excitation

TUDelft

Low-Frequency Response

Beating pattern in wave elevation


Variation in wave loads and response

PhD thesis Pinkster: Low frequency surge motion of moored LNG carrier in irregular head seas, <u>http://resolver.tudelft.nl/uuid:d6d42e9c-</u> <u>c349-47e5-8d63-5c6454196b04</u>

Delft

Moored Floater Response – Damping

 Problem: at very long oscillation periods (in this example above 40 sec) there is hardly any wave radiation damping

TUDelft

Damping Sources for Low-Frequency Motions

Main sources for low-frequency damping

- Viscous damping on the hull (friction)
- Wave drift damping
- Mooring line damping, including bottom friction
- Only fully empirical or semi-analytical formulations; application is ulletlimited and needs validation
- Viscous damping
 - Modelled together with current loads. Based on relative fluid velocity
- Wave drift damping (relating wave drift force to slow floater motion)
 - Obtained from drift forces and their derivatives
- Mooring line damping
 - Can be estimated based on line dynamics and drag formulations
- Damping included in dynamic mooring analysis (time domain) TWIND 2022 | Floating Substructures & Moorings | Sebastian Schreier

Environmental Load Components

Com- ponent	Loading Description	Fluctuations in 3hour sea state	Response					
Wind	10-min mean wind velocity (m/s)	Prescribed wind spectrum	Mean offset + low frequent oscillations					
Current	Mean current velocity (m/s)	Often assumed zero	Mean offset					
Waves	1 st order wave load	Irregular 1st order load; wave spectrum	Zero mean + wave frequent oscillations					
	2 nd order wave load = drift load	Low frequent 2 nd order load variations; wave grouping	Mean offset + low frequent oscillations					

Installation

Port Assembly and Tow-out

- Floater and turbine assembled at quay-side
 - Towed to location
 - Moored in place
 Requires
 - \rightarrow (very) deep-water port
- \rightarrow Floater stability in towed condition

On-site Assembly

- Floater and turbine assembled at offshore location
 - Floater towed to location and moored
 - Tower and RNA installed later Requires
- → High lifting capacity crane vessel
 → Floating to floating installation

Model Testing – Ongoing MSc thesis

Experimental Motion Analysis of a Floating Offshore Wind Turbine under the Influence of Waves, (simulated) Wind Loads, and its Mooring System

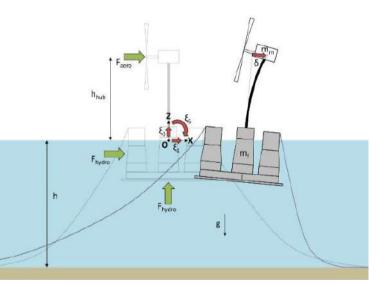


Figure 1: Impression of forces and response on a FOWT. From: Pegalajar-Jurado, A., Borg, M., and Bredmose, H.: An efficient frequency-domain model for quick load analysis of floating offshore wind turbines, Wind Energ. Sci., 3, 693–712, https://doi.org/10.5194/wes-3-693-2018, 2018, licensed under <u>CC. BY</u>.

TUDelft

Reading Material

)elft

- Journée, JMJ, Massie, WW, Huijsmans, RHM (2015). Offshore Hydromechanics, 3rd edition.
- Holthuijsen, LH (2007). Waves in Oceanic and Coastal Waters. → e-book available via TU Delft Library: <u>https://tudelft.on.worldcat.org/search?queryString=%22Waves+in+Oceanic+an</u> <u>d+Coastal+Waters%22#/oclc/663973262</u> or
- <u>https://app-knovel-</u> com.tudelft.idm.oclc.org/web/toc.v/cid:kpWOCW0002/viewerType:toc//root_slug :waves-in-oceanic?kpromoter=marc
- Ma, K-T, Luo, Y, Kwan, T, Wu, Y (2019). Mooring System Engineering for Offshore Structures. → available via Science Direct: <u>https://www.sciencedirect.com/book/9780128185513/mooring-system-engineering-for-offshore-structures</u>