Floating wind turbine control

Prof. dr. ir Jan-Willem van Wingerden (based on the slides of ir. Gijs van der Veen)

Introduction

- Off-shore turbines:
 - Larger wind resource
 - Lower turbulence levels
 - Large areas available
- Floating off-shore turbines:
 - Most cost-effective solution when depth >50m
 - On-shore construction, serial production
- Technical challenges:
 - Safety
 - Modelling and simulation (loads)
 - Control system

Control challenges

In full load control: track rated (~maximum) power

Control challenges, full load

Strict specifications:

- ■Do not exceed generator speed limit → shutdown
- ■Do not exceed fore-aft tilt limits

Potential instability problem

Potential instability problem

• Also follows from steady-state thrust curve

Potential instability problem

Fixed vs floating

- Conventional turbines on fixed foundation:
 - ■~0.3 Hz bending mode
 - Controller much slower than this

- Floating turbines:
 - ■~0.03 Hz tilt mode
 - ■Within controller bandwidth!
 - Right-half-plane zeros

Simplified dynamic model

- Pitch to generator speed dynamics
- Zero locations

$$z pprox -rac{1}{2}\left(4\pi \zeta_{ ext{twr}} ext{\it f}_{ ext{twr}} + a_1 rac{ ext{d} ext{\it F}_{ ext{T}}}{ ext{d} ext{\it V}}
ight) \pm ext{\it j} 2\pi ext{\it f}_{ ext{twr}}$$

Simplified dynamic model

- Pitch to generator speed dynamics
- Zero locations

$$zpprox -rac{1}{2}\left(4\pi\zeta_{ ext{twr}}f_{ ext{twr}}+a_{1}rac{ ext{d}F_{ ext{T}}}{ ext{d}V}
ight)\pm j2\pi f_{ ext{twr}}$$
 $a_{1}rac{ ext{d}F_{ ext{T}}}{ ext{d}V}>-4\pi\zeta_{ ext{twr}}f_{ ext{twr}}$

Not a fundamental limitation, yet lightly damped oscillations in closed-loop

Simplified dynamic model

Pitch to generator speed dynamics

Zero locations

$$z pprox -rac{1}{2}\left(4\pi\zeta_{ ext{twr}}f_{ ext{twr}}+a_1rac{\mathsf{d}F_{\mathsf{T}}}{\mathsf{d}V}
ight)\pm j2\pi f_{ ext{twr}}$$

$$a_1 rac{\mathsf{d} F_\mathsf{T}}{\mathsf{d} V} < -4\pi \zeta_\mathsf{twr} f_\mathsf{twr}$$

Fundamental limitation

Frequency domain illustration

Potential solutions

1. Reduce controller bandwidth

2. Parallel compensation

3. Add control DOF

4. Pitch-to-stall operation

1. Reduce controller bandwidth [1]

[1] J. Jonkman

10 Fixed turbine with conventional PI controller - bandwidth 0.2 Hz

1. Reduce controller bandwidth

1. Reduce controller bandwidth

1. Reduce controller bandwidth - summary

Reduce bandwidth due to RHP zeros

• Larger speed excursions

■ Either: premature shutdowns due to generator over-speed

■Or: choose lower speed/power set-point

• Accept larger power fluctuations and poor tilt damping

Potential solutions

1. Reduce controller bandwidth

2. Parallel compensation

3. Add control DOF

4. Pitch-to-stall operation

2. Parallel compensation [2,3,4]

[2] W. E. Leithead and S. Dominguez, [3] T. J. Larsen and T. D. Hanson, [4] M. A. Lackner and M. A. Rotea

- Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increases damping of tilt motion → place tilt mode poles deeper into LHP
 Increase damping of tilt motion → place tilt mode poles deeper into LHP
 Increase damping of tilt motion → place tilt motion → p
- Still: fundamental limitations due to (almost) RHP zeros

2. Parallel compensation

Improves tilt damping, but generator speed response stays poor

Potential solutions

1. Reduce controller bandwidth

2. Parallel compensation

3. Add control DOF

4. Pitch-to-stall operation

3. Add control degree of freedom [4,5]

[4] M. A. Lackner and M. A. Rotea, [5] B. Fischer

- \bigcirc Only genuine solution \rightarrow no transmission zeros in MIMO model; no fundamental bandwidth limit
- Most obvious solution: use generator torque
 - Torque control directly affects power output
 - •May end up in side-side oscillations (strong coupling)
 - Increases drive train loads
 - ■Not available on grid loss failure
- Openition of the control of the c
 - •Active mass damper in nacelle (feasible?)
 - Fast active ballast system

Potential solutions

1. Reduce controller bandwidth

2. Parallel compensation

3. Add control DOF

4. Pitch-to-stall operation

4. Pitch-to-stall operation

• No static instability

- Difficult to model
- Potentially high loads due to blade stall
- ULess opportunities to regulate power

Potential solutions - summary

- 1. Reduce controller bandwidth
 - Larger speed excursions
 - ■Generator over-speed shutdowns *or* lower speed and power set-point
- 2. Parallel compensation
 - Fundamental limitations due to RHP zeros
- 3. Add control DOF
 - ■No transmission zeros in MIMO model
 - Not a trivial solution
- 4. Pitch-to-stall operation
 - Modelling and loads

Future turbines

• Future turbines will increase in size:

1. Analysis of larger rotors shows $\frac{dF_T}{dV}$ will increase in magnitude

2. Taller towers imply lower natural frequencies

$$zpprox -rac{1}{2}\left(4\pi\zeta_{ ext{twr}} extstyle{f_{ ext{twr}}}+a_{1}rac{ ext{d} extstyle{F}_{ extstyle{T}}}{ ext{d} extstyle{V}}
ight)\pm extstyle{j}2\pi extstyle{f_{ ext{twr}}}$$

Summary

- The low-frequency lightly damped tilt mode of a floating wind turbine presents control challenges
 - Fundamental limits
- Modification of existing control strategies is absolutely necessary for pitch-to-feather operation
- No clear "best" solution
- Naturally motivates treating as multivariable control problem

WindFloat (Principle Power USA)

2012 American Control Conference Fairmont Queen Elizabeth, Montréal, Canada June 27-June 29, 2012

Control of floating wind turbines

G.J. van der Veen, I.J. Couchman, and R.O. Bowyer.

- [1] J. Jonkman, Influence of control on the pitch damping of a floating wind turbine, 46th AIAA Aerospace Science Meeting, Reno, US, 2008.
- [2] W. E. Leithead and S. Dominguez, Coordinated Control Design for Wind Turbine Control Systems, EWEC Athens, Greece, 2006.
- [3] T. J. Larsen and T. D. Hanson, A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine, The Science of Making Torque from Wind, Journal of Physics: Conference Series 75, 2007.
- [4] M. A. Lackner and M. A. Rotea, Structural control of floating wind turbines, Mechatronics, 2010.
- [5] B. Fischer, Reducing rotor speed variations of floating wind turbines by compensation of non-minimum phase zeros, EWEA, 2012.