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Today

Objective:

• Understand control technology

• Understand a typical wind turbine controller

• How to design a basic wind turbine controller

van Wingerden (DCSC, TU Delft) 2 / 34



Introduction How to control WT? Control theory (brief) Loop Shaping Power Control

Largest Wind Turbines

https://www.ge.com/renewableenergy/wind-energy/turbines/haliade-x-offshore-turbine
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Control for power production

Control for power production

Fundamental relations:
• Power = Qdωg

Qd= Generator Torque
ωg = Generator Speed

• Power = 1
2ρπR

2Cp(λ, β)V
3

ρ = air density
R = rotor radius
V = effective windspeed
Cp= power coefficient
β= pitch angle

• tip speed ratio λ =
Rωg/G

V
G = Gear box ratio
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VS-VP

VS-VP (Below rated)

Fundamental relation:
• Qd =

πρR5Cp(λ,β)
2λ3G3 ω2

g

• Qopt
d =

πρR5Copt
p

2λ3
optG

3 ω2
g

Typically we have:
• Efficiency

94.4%
• Limit on gen. speed

Max=123 rad/s

• Limit on generator
power
Max Power= 5 MW
Max Qd=43 kNm
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VS-VP

VS-VP (Above rated): Reduce Cp

Shading is the gradient of Cp
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VS-VP

The feedback control loops

3 feedback loops:

1 Start up → PI
2 Torque control → PI
3 Pitch control

→ gain-scheduled PI(D)
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VS-VP

The controller

Controller
β

Qd

ωg

ẍfa

ẍss

Mb

. . .
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VS-VP

The controller

Condition
ωg < ωA∗ ✓
ωg < ωB - ✓
Qd > koptω

2
B - - ✓

Qd > koptω
2
max - - - ✓

Qd > Qmax
d - - - - ✓
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Traditional feedback loop

Feedback loop

r(t)
C(s)

e(t)
P (s)

u(t) y(t)

−1

Important relation

y =
P (s)× C(s)

I + P (s)× C(s)︸ ︷︷ ︸
T (s)

r +
I

I + P (s)× C(s)︸ ︷︷ ︸
S(s)

v

or
y =

L(s)

I + L(s)
r +

I

I + L(s)
v

with L(s) = P (s)× C(s)
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What do you need to design controllers

What do you need?

Control objective (Power production, load reduction)

Require: Simple linear models. To:
• indicate stability issues (gain margin, phase margin)
• look at the responsiveness of the controller (cross over

frequency)
• look at damping (look at the poles of the closed-loop system)
• look at the systems response(steps in wind)

Also require: High fidelity models (nonlinear). To:
• do advanced load calculations (FAST, Bladed, HAWC, etc)
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Linear differential equations

Linear differential equations

What are C(s) and P (s)?

Example: ẏ = Ksysu

L(ẏ) = sy and L(ÿ) = s2y

So, P (s) =
Ksys

s

Linear differential equations

Think of u=force and y=velocity

Where L(.) is the Laplace operator

P (s) =
Ksys

s

Loops 1, 2, 3

are of the form, P (s) =
−Ksys(V )

s +H(V, s)
where H(V, s) is structural dynamics (high frequent??)
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Example integrator

Example integrator

Plant:
P=Ksys

s

Proportional control:
C=K

Open loop:
PC=KKsys

s

CL: Step response (r):
Black K=1
Gray K=5

CL: Step response (v):
Black K=1
Gray K=5
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Dynamic response

Dynamic response
Characterized by:
Poles of CL(s)or
Zeros of I+L(s)

Impulse response:
y = est

Ex: First order:
1

τs+1

1 pole at s=− 1
τ

Ex: Second order:
1

s2+2ωnζ+ω2
n

2 poles at
s=−ωnζ ± ωn

√
1− ζ2i

Issue with FB: Stability!!!
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Stability (simple)

Stability (simple)
Remember:

y =
L(s)

I + L(s)
r +

I

I + L(s)
v

It is sufficient to consider the imaginary axis (s = iω):

y =
L(iω)

I + L(iω)
r +

I

I + L(iω)
v

It is instinctive to state that the system is unstable if:

L(iω) = −I
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Stability, PM and GM

Stability, PM and GM
So we want:

L(iω) ̸= −I ∀ω

A system is unstable if:

|L(iω)| = I and ∠L(iω) = −180

for one of the ω’s

Goal stay far away from this point!!

Tool: Gain and Phase margin
GM: the gain where ∠L(iω) = −180 (typical > 3)
PM: the phase where |L(iω)| = I (typical > 40 degrees)

First we need Bode.
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Bode

Bode

Bode plot:
• Bode:

plot(ω,|L(iω)|)
and
plot(ω,∠L(iω))

• GM and PM

• Cross-over
frequency
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Loop Shaping

Loop Shaping

Key Idea: Shape L(s) using Nyquist/Bode for closed-loop
performance and stability

How (I): C(s) = Ld(s)
P (s) where Ld is desired loop transfer function

How (II): place poles and zeros using Bode/Nyquist to get desired
loop transfer function

Three key areas:
1 Low Frequencies, Load disturbance attenuation (High gain)
2 Cross-Over region, Robustness (Take care of margins)
3 High Frequencies, High frequency measurement noise (Low

gain)
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Loop Shaping

Loop Shaping: Loop Transfer Function

• Low Frequencies, High gain
• High Frequencies, Low gain
• Cross-Over region, Stability Margins, (PM=30o, 45o, 60o equals

Slope −5/3, −3/2, −4/3 )
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Loop Shaping

Loop Shaping: Sensitivity

• Low Frequencies, Low gain, Disturbance rejection
• High Frequencies, Gain=1, No difference between OL or CL
• Cross-Over region, Inevitable Peak MS , OL will outperform CL at

some freq.
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Loop Shaping

Loop Shaping: Compl. Sensitivity

• Low Frequencies, Gain=1, Tracking of the reference
• High Frequencies, Low gain, No tracking of the reference
• Cross-Over region, Inevitable Peak MT , Remember the equality
S + T = I, Peak in S results in peak in T
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Control elements

Control elements
We have e.g.:
• P-action
• I-action
• D-action
• Low pass filter
• Notch
• PI
• PID
• Lead-lag

C(s) =Kp
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Control elements

Control elements
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Control elements

Control elements
We have e.g.:
• P-action
• I-action
• D-action
• Low pass filter
• Notch
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Design process (Tracking)

Design process (Tracking): Low Frequencies

e.g. I or PI

Reduce steady state errors by increasing the loop gain
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Design process (Tracking)

Design process (Tracking): Cross-Over

e.g. D or Lead-Lag

Increase the phase to satisfy stability margins
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Design process (Tracking)

Design process (Tracking): High frequencies

e.g. I or Low-Pass

Reduce the gain to mitigate the effect of measurement noise

van Wingerden (DCSC, TU Delft) 26 / 34



Introduction How to control WT? Control theory (brief) Loop Shaping Power Control

Design process (Tracking)

Design process (Tracking)

• Determine gain cross-over frequency (|L(iωgc)| crosses 1)

• Add low pass filter to suppress the effect of high frequent
dynamics (integrator, low-pass, notch)

• Add phase (D-action, lead-lag)

• Set cross-over frequency (P-action)

• Reference tracking (I-action)
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Example: WT Torque Control

Torque control

Controller
Qd

ωg

ẍfa

ẍss

Mb

. . .
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Example: WT Torque Control

Torque control: PI+
Reference tracking:
• L(s)

• Add LP (1st , 2nd)

• Tune Gain
• Add I-action
• Add more gain
• L(s)

1+L(s)

• Nyquist
• Time Domain

L(s):
-

2e3
(
1 + 0.25

s

)

P (s)LP (s)

-5e3
(
1 + 0.25

s

)
P (s)LP (s)

van Wingerden (DCSC, TU Delft) 29 / 34



Introduction How to control WT? Control theory (brief) Loop Shaping Power Control

Example: WT Torque Control

Torque control: PI+
Reference tracking:
• L(s)

• Add LP (1st , 2nd)

• Tune Gain
• Add I-action
• Add more gain

• L(s)
1+L(s)

• Nyquist
• Time Domain

L(s):
-2e3

(
1 + 0.25

s

)
P (s)LP (s)

-5e3
(
1 + 0.25

s

)
P (s)LP (s)

van Wingerden (DCSC, TU Delft) 29 / 34



Introduction How to control WT? Control theory (brief) Loop Shaping Power Control

Example: WT Torque Control

Torque control: PI+
Reference tracking:
• L(s)

• Add LP (1st , 2nd)

• Tune Gain
• Add I-action
• Add more gain
• L(s)

1+L(s)

• Nyquist
• Time Domain

L(s):
-2e3

(
1 + 0.25

s

)
P (s)LP (s)

-5e3
(
1 + 0.25

s

)
P (s)LP (s)

van Wingerden (DCSC, TU Delft) 29 / 34



Introduction How to control WT? Control theory (brief) Loop Shaping Power Control

Example: WT Torque Control

Torque control: PI+
Reference tracking:
• L(s)

• Add LP (1st , 2nd)

• Tune Gain
• Add I-action
• Add more gain

• L(s)
1+L(s)

• Nyquist

• Time Domain

L(s):
-2e3

(
1 + 0.25

s

)
P (s)LP (s)

-5e3
(
1 + 0.25

s

)
P (s)LP (s)

van Wingerden (DCSC, TU Delft) 29 / 34



Introduction How to control WT? Control theory (brief) Loop Shaping Power Control

Example: WT Torque Control

Torque control: PI+
Reference tracking:
• L(s)

• Add LP (1st , 2nd)

• Tune Gain
• Add I-action
• Add more gain

• L(s)
1+L(s)

• Nyquist

• Time Domain

L(s):
-2e3

(
1 + 0.25

s

)
P (s)LP (s)

-5e3
(
1 + 0.25

s

)
P (s)LP (s)

van Wingerden (DCSC, TU Delft) 29 / 34



Introduction How to control WT? Control theory (brief) Loop Shaping Power Control

Pitch Control

Pitch control

Controller
β

ωg

ẍfa

ẍss

Mb

. . .
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Pitch Control

Pitch control: PI +

Reference tracking:
• L(s)

• Add LP (1st , 2nd )

• Tune Gain
• Add I-action
• CL
• Nyquist
• Time Domain

L(s):
-

0.005
(
1 + 0.2

s

)

P (s)

LP (s)
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Damper

Fore-aft tower damper

Controller
β

ẍfa

ωg

ẍss

Mb

. . .
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Damper

Fore-aft tower damping (the concept)

Tower dynamics (approx.):

Mẍfa +Dẋfa +Kxfa = F + δF

Typically, D small. Add damping by:

δF = −Dpẋfa

Pitch will affect the thrust force (F):

δF =
∂F

∂β
δβ = −Dpẋfa =⇒ δβ =

−Dp

∂F/∂β
ẋfa

How to pick this gain? (Use the loopshaping ideas)
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Damper

Tower damper

Vibration control:
• P

• Integrate
• Tune Gain
• P

1+PC

• Time Domain

OL:
-0.1 1

s
P (s)
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