Wave Resource

George Lavidas, PhD

Civil Engineering and Geosciences Delft University of Technology, The Netherlands

Contents

- 1. Introduction 1a. Waves basic definitions
- 2. Ocean Waves

2a. Wave Spectra2b. Complexities2c. Monitoring

3. Wave Resources

3a. Temporal Distinctions
3b. Renewable Energies
3c. Resource Assessments
3d. Presenting the Data

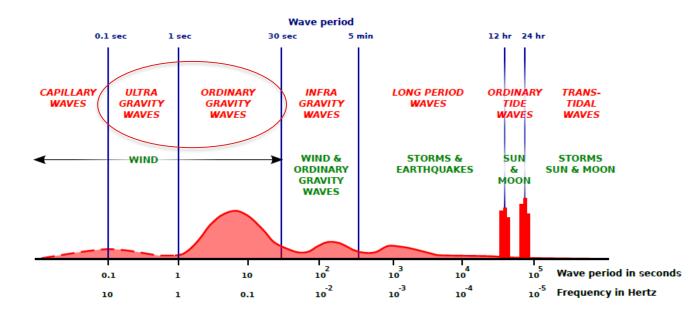
1. Introduction

The Sea

ŤUDelft

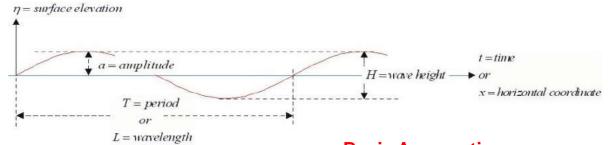
Mankind has managed to use the Sea **almost** as well as inlands.

After you leave....


- What are the basic wave principles
- How environments add complexity
- How are waves characterised
- How to monitor waves & usefulness of waves
- How to estimate wave energy resource
- Replicating the Ocean in tanks

Definition

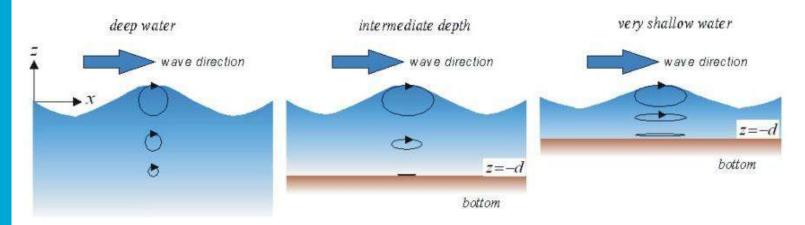
In general an ocean/sea wave is: "the mean of vertical motion of the ocean surface"


Vertical motion can be either due to **wind**, **gravity**, tectonic plates, etc.. There are numerous "wave" version(s), however we focus at <u>wind generated waves</u>.

Linear Waves

$$\eta(\chi,t) = \alpha \, \sin(\omega t - \kappa \chi)$$

With $\boldsymbol{\omega}$ based on dispersion:


$$\omega^2 = g\kappa tanh(\kappa d)$$

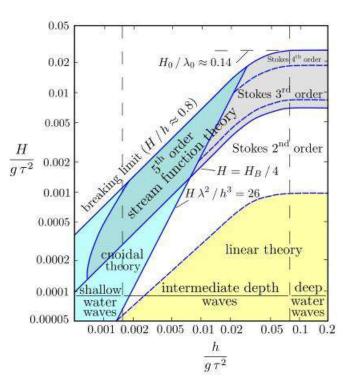
Basic Assumptions:

- Fluid is homogeneous, incompressible & Ideal (inviscid)
- Surface tension-Coriolis neglected
- Pressure is constant and uniform
- Boundaries are zero
- *α* is very very small in space-time domain

Waves with different lengths propagate at different speeds, i.e. they are dispersive. The dispersion relationship is implicit in κ so an iterative scheme must be used to solve for κ if ω is known.

Linear Waves

Local characteristics affect waves



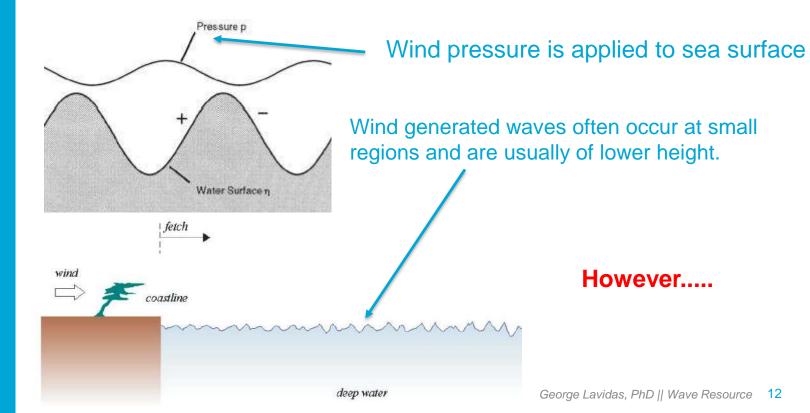
Non-Linear Waves

Waves are not ideal

Waves have to "broken" into smaller pieces (decomposed).

Affected by depth (wave steepness)

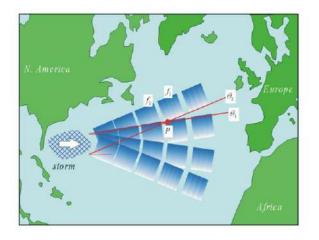
2. Ocean Waves

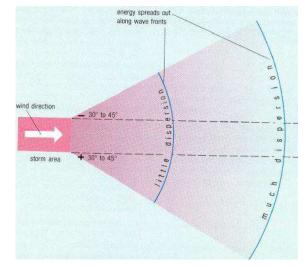


George Lavidas, PhD || Wave Resource 11

Wind generated waves

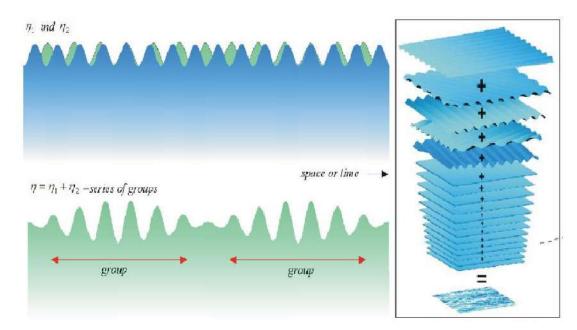
JDelft


Real ocean waves are more complex and most are irregular waves


Swells

ŤUDelft

Wind generated waves travelling long distances, "transform" into swells


They tend to maintain a constant direction with some directional spreading

- High frequency (low periods) "merge" to form lower frequency
- Lower frequency waves, travel faster

Real waves

Real Seas encompass waves that have multiple characteristics (regular, irregular, swells, wind-waves etc.).

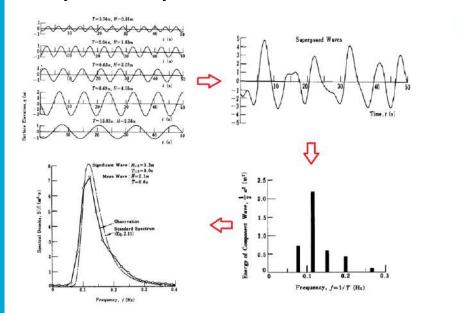
They constitute a variety of periods/frequencies and elevations.

Wave Spectra

Basic concept : Wave spectrum is surface elevation as a function of time, always considering numerous harmonic waves

✓ One directional spectrum (1D)

Two directional spectrum (2D)

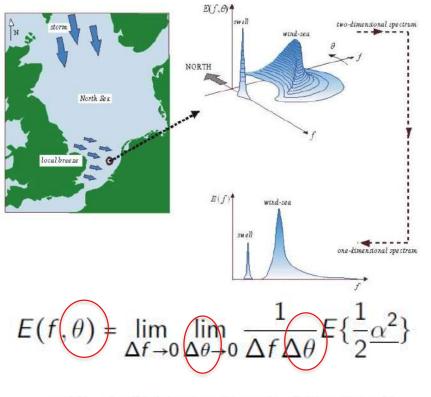

$$\underline{\eta}(t) = \sum_{i=1}^{N} \underline{\alpha_i} \cdot \cos(2\pi \cdot f_i \cdot t + \underline{\phi_i})$$

This is the random-phase amplitude model !!

1D Spectrum

Seas **do not** have pre-defined **OR** discrete range of frequencies, **nor** are they stationary in time.

$$E(f) = \lim_{\Delta f \to 0} \cdot \frac{1}{\Delta f} \cdot E \cdot \{\frac{1}{2} \cdot \underline{\alpha}^2\}$$


 $E_{energy}(f) = \rho \cdot g \cdot E(f)$

Units in: E(f)= $[m^2 \text{ s}]$ or $[m^2/\text{Hz}]$

The 1D spectrum describes large number of waves in the time/frequency domain

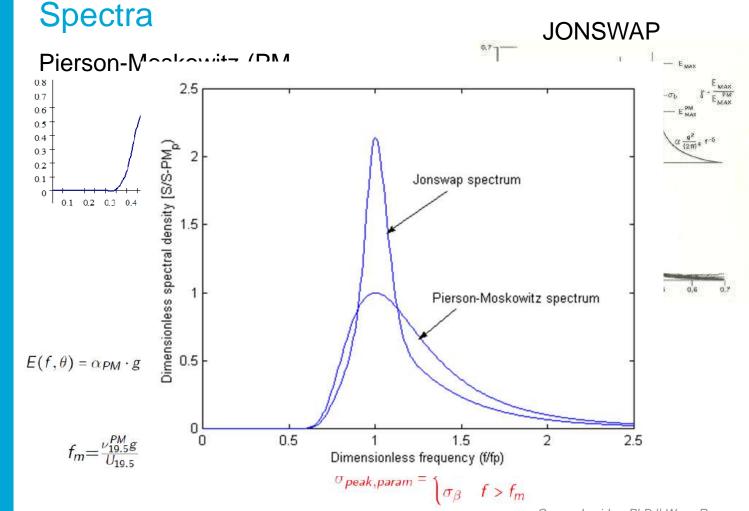
2D spectrum

 $E(f)=[m^2/Hz/rad]$ or $[m^2/Hz/deg]$

Description of spectral for real waves

Wave Energy Spectra

- Wind generated waves are random
- Superposition of larger number of waves
- Waves is described according to amplitudes and energy variance
- Some variations of spectra exist


Spectra (Empirical)

- Pierson-Moskowitz (PM)
- Joint North Sea Wave Project (JONSWAP)
- Other empirical formulations

Ocean spectra of real waves provide realistic descriptions.

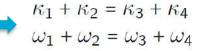
Major consideration is that wind acts as the generating and propagating force

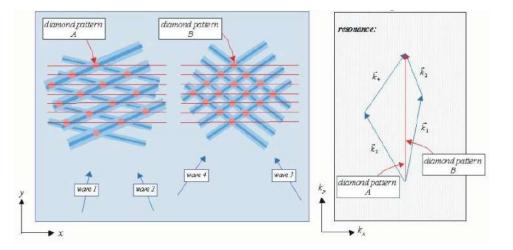
ŤUDelft

Complexities

Waves do not just propagate and increase their energy, environmental interactions that reduce energy content and shift to higher frequencies.

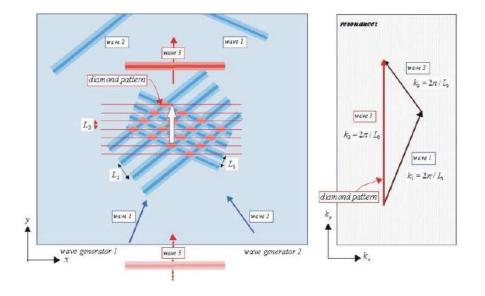
Reasons:


- Quadruplets
- Triad interactions
- Whitecapping
- Dissipation Terms
- Shallow water mechanics
- Current & Tidal Components


and more intricate based on local environment (but with less importance)

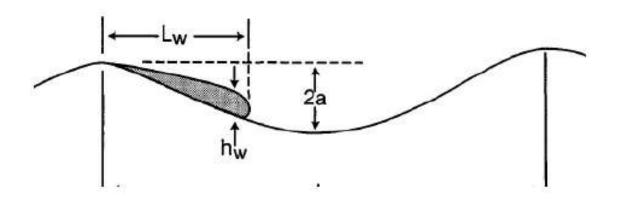
Non-Linear for Deep water (Quadruplet)

- i. Effective frequency (re-) distribution
- ii. Interactions between four wave numbers
- iii. Effective **ONLY** when resonance condition are met
- iv. Always Energy is balanced at the end



Non-Linear for Shallow (Triads)

- i. Effective frequency (re-)distribution
- ii. Interactions between three waves
- iii. Nearshore & mid-depth waters
- iv. Final Energy is balanced, again !


 $\overset{\kappa_{tr,1} + \kappa_{tr,2} = \kappa_{tr,3}}{f_{tr,1} + f_{tr,2} = f_{tr,3}} \\ \beta_{tr1,2} = \phi_{tr,1} + \phi_{tr,2} - \phi_{tr,1+tr,2}$

Whitecapping

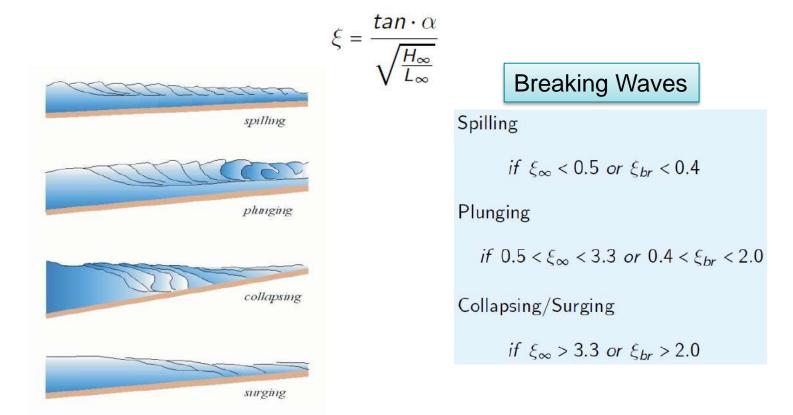
Least understood of dissipation mechanisms. It is only negative (loss) of energy.

Depth Effects

Bottom friction

- Effects of seabed on water column
- Negative effects
- Depends on seabed particles roughness
- Site specific
- Material specific

Depth breaking


- At shallow depth breaking is more often
- Cannot be predicted always
- Preferred to obtain by a ration of wave height-to-depth

$$\frac{H_{max}}{d} \approx 0.75$$

Depth Induced breaking (Depth Effects)

Depth induced breaking due to the reduction of bathymetry (shallow water)

Near & Shallow waters

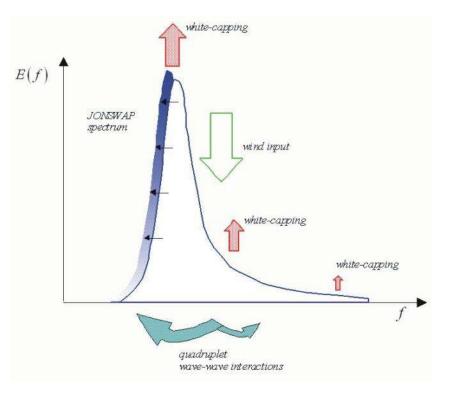
Shoaling & Reflection

- Phase speed = Group velocity
- Waves disperse less
- Waves will reflect on coastlines
- Pending on morphology (i.e. sloped, vertical etc.)
- Returning waves cause higher non-linear losses

Refraction & Diffraction

- Waves slowly change direction as they move ashore
- As in the case of other wave types (i.e. Snel's Law similarities)
- Long-crested waves prefer to propagate to lower energy region
- Waves <u>will</u> propagate to sheltered lower resource region

Dominant physical processes in nearshore environments and can affect the spectrum and directional components



Tides & currents

- Local environmental characteristics also include, local wave current and tidal resources.
- Pending on region and resolution at which is observed, tidal & current effects can alter direction and reduce wave energy propagated.
- These consideration will depend on the level of study, and application
- Different approach to higher non-linear physical solution is needed

Final outcomes from generation & dissipation

Why data acquisition & monitoring

Applications

- Maritime
- Marine structures
- Offshore platforms
- □ M&O
- Offshore energies

More.....

JDelft

Objectives

- Hindcasts
- Forecast studies (short/long & term)
- Climate Change
- More

Methods

- 1. Buoys/ADCP
- 2. Ship observations
- 3. Satellites
- 4. Numerical Wave Models (NWM)

Buoys/ADCP

Limitations

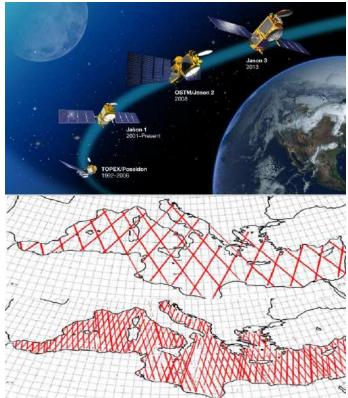
- Area coverage
- Time recording duration
- Monitored quantities
- Dependence on moorings
- Breakdown events (nonrecording)
- Filtering processes required

ŤUDelft

Ship Observation

Limitations

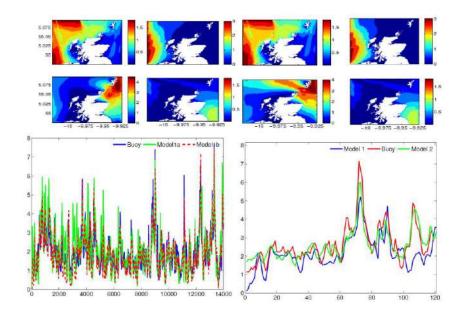
- Requires experienced personnel
- Short durationexpedition
- Limited applicability



Satellites

Limitations

- Temporal recordings
- Coverage
- Applicability nearshore & coastal waters
- Filtering processes are necessary
- Not immediately available



Numerical Models

Limitations

- Inputs quality
- Physical calibration
- Need benchmarking
- Computational resources
- Experienced User
- High level of tuning

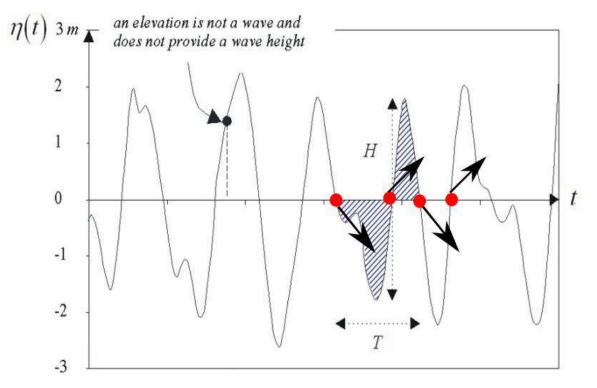
3. Wave Resources

George Lavidas, PhD || Wave Resource 34

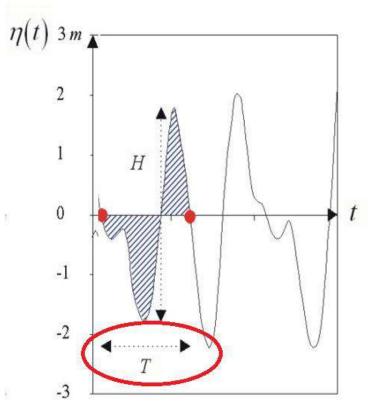
Why is the wave resource important?

Short answer: It helps us with day-to-day operations

Long answer: It provides necessary information that can be expanded to many different sectors


- Naval, maritime (Commercial & Military)
- Weather forecasting
- Structures/platforms
- Ships
- Fisheries
- Climate Analysis
- Climate Change
- Energies

. . . .


Metocean characteristics

A wave is not every surface elevation

Distribution(s)

Pending on the description desired, waves can be distinguished in two ways:

I. WeatherII. Climate

These two will ultimately use different approaches & outcomes: **Short-term & Long-term** Statistical analysis.

- For shorter periods changes are easily observed i.e. foreshores and shallow water waves.
- Local Characteristics have serious effects

Short-Term Statistics

- 15-30 min or for a storm 6-12 hr
- Easily "accessible"
- Suitable short time intervals & storm
- Assume Gaussian and stationary
- Used analyse structures, fatigues and instantaneous characteristics
- Determine physical wave characteristics

Long-Term Statistics

- ✓ Non-stationary
- Design condition for offshore & coastal structures
- For energy applications
- Climate analysis
- Difficult to obtain data
- No theoretical distribution model
- Requires preparation of dataset

Extreme Value Analysis (EVA) is useful in many sectors and very important for estimating survivability, applicable to the energy sector

Extreme Value Analysis (EVA)

Usually 20, 50, 100 years of return periods are investigated.

- Suitable method/empirical distributions need proper selection
- Access/Development and preparation of datasets
- "Goodness-of-Fit" assessment
- Estimation and determination of probabilities of exceedance that may occur in the future
- Awareness of extreme events and expected return values is vital to the design in offshore industries

Recommended duration > 10 years, ideally not less that 20% of the desired return period

EVA requirements

- Extract long timeseries
- Ensure Identically Independent Distributed (i.i.d)
- ✓ Set threshold value appropriate selection (*u*)
- Filter i.i.d sample with threshold values
- EVA of new timeseries
- Selection of method
- Evaluation "goodness-of-fit"
- Return Period

Applied EVA Theories

Depending on the nature of our analysis 2 extreme theories can be used.

Generalized Extreme Value (GEV) Generalized Pareto Distribution (GPD)

$$P_{r} \cdot \{M_{n}\} = P_{r} \cdot \{X_{1} \le z, X_{2} \le z, \dots, X_{n} \le z\}$$
$$P_{r} \cdot \{M_{n}\} = P_{r} \{\{X_{1} \le z\} \cdot \{X_{2} \le z\} \cdot \dots \cdot \{X_{n} \le z\}\}$$
$$P_{r} \cdot \{M_{n}\} = \{F(z)\}^{n}$$

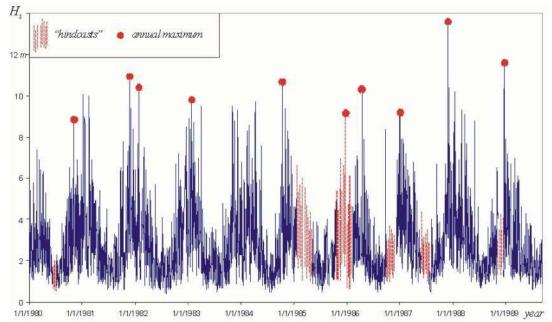
for example: For H_{50} return of 10 years sample size are expressed as return value:

$$P_{H_{m0_N} \leq \chi_N} = 1 - \frac{1}{N}$$

An Introduction to Statistical modelling of extreme values (2001)" by Stuart Coles, Springer Series in Statistics

GEV

$$G\left\{z\right\} = \begin{cases} exp\left\{-\left[1+\xi\cdot\left(\frac{z-\mu}{\sigma}\right)\right]^{\frac{1}{\xi}}\right\} & \xi \neq 0\\ exp\left\{-exp\cdot\left[-\left(\frac{z-\mu}{\sigma}\right)\right]\right\} & \xi = 0 \end{cases}$$


Pending of parameters ξ , μ , σ distributions are determined by:

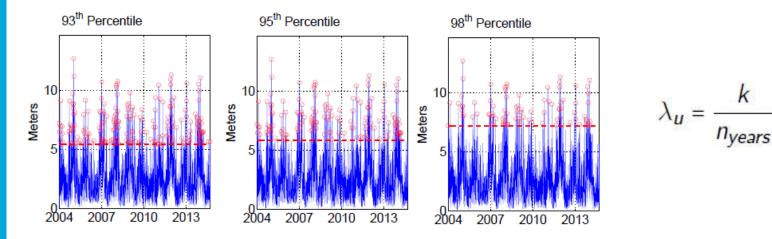
Typel
$$\xi = 0$$
TypelI $\xi > 0$ TypelII $\xi < 0$ $-\infty < \mu < \infty$ $-\infty < \xi < \infty$ $\sigma > 0$

GEV & AMM

Usual method to filter/decluster dataset when using GEV is Annual Maxima Method (AMM).

Threshold is usually only one value, the annual maxima

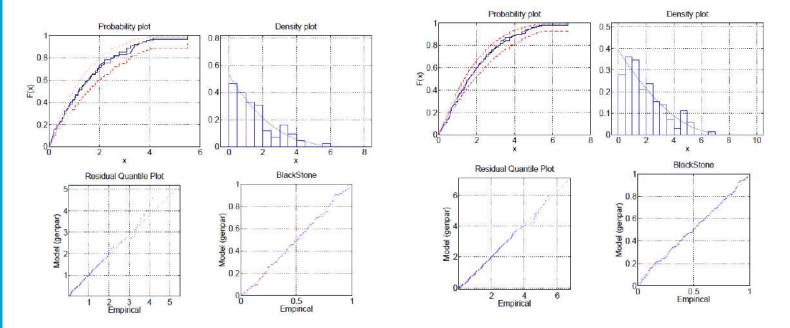
Alternative developed to alleviate pitfalls from GEV.


$$F\left\{z\right\} = \begin{cases} 1 - \left(1 + \xi \cdot \frac{z}{\hat{\sigma}}\right)^{-\frac{1}{\xi}} & \xi \neq 0\\ 1 - \exp\left(-\frac{z}{\hat{\sigma}}\right) & \xi = 0 \end{cases}$$

Pending on $\boldsymbol{\xi}$ from fitted data & thresholds

$$\begin{array}{ll} \left(\begin{array}{ll} Typel & \xi = 0 \\ Typell & \xi > 0 \\ \hline Typelll & \xi < 0 \\ z > 0, \hat{\sigma} > 0, \sigma > 0 \\ \left(1 + \xi \cdot \left(\frac{z}{\hat{\sigma}} \right) \right) > 0 \end{array} \right.$$

GPD & POT



Return period based on GPD

$$z_p = u + \frac{\hat{\sigma}}{\xi} \cdot \left[(N \cdot \lambda_u)^{\xi} - 1 \right]$$

Assessing the fits

Resource assessment


A resource assessment that is applicable over wide spatio-temporal conditions can be done (predominately in two ways):

- Satellite Data
- Numerical Wave Modelling

Preparation is Key!!

Depending on data produced or sampled filtering, clearing, modelling and set-up is vital. Usually to ensure proper assessment a numerical multi-model is the most suitable method.

- Wind Components
- Bathymetry information
- Constructing the model code
- Boundary conditions
- Initial conditions
- Determine time duration
- Determine parameters
- Nesting & Multi-model combination
- and many more intrinsic and project specific details.

Numerical Modelling

Strengths Global and/or Local coverage Computing Speed Accuracy Historical data Forecast data Results for multiple industries Multiple nesting Physical solutions of complex terms Timescale of results Tuning of physical properties Data Assimilation HPC multi-threading (computing) Opportunities Data assimilation Multi-model communication HPC multi-threading (computing) Quality of Inputs

Weaknesses

Experience of User Data for calibration, validation Storage requirement Computing requirements Tuning of physical properties Improvements for physical terms Quality of inputs

Threats User Experience Instability of propagation schemes Allocation of computing resources Processes based on empirical formulations

Distinction

	Oceanic waters	Coastal water		
Process		Shelf Seas	Nearshore	Shallow
Wind generation				
Quadruplets			-	
Whitecapping			•	
Bottom Friction				•
Depth breaking		•		
Currents		•		
Triads		•		•
Reflection				
Refraction				

 $\blacksquare \blacksquare = Dominant, \blacksquare = Significant, \blacksquare = Minor, \square = Negligible$

Action Balance Equation

The Action Balance Equation is applicable both on Cartesian & Spherical, with a full spectral non-stationary solution.

$$\frac{\partial N \cdot (\sigma; \lambda; \theta; t)}{\partial t} + \frac{\partial C_{g,\lambda} \cdot N \cdot (\sigma; \lambda; \theta; t)}{\partial \lambda} + \cos \phi^{-1} \cdot \frac{\partial C_{f,\phi} N(\sigma; \lambda; \theta; t)}{\partial \phi} + \frac{\partial C_{f,\theta} \cdot N \cdot (\sigma; \lambda; \theta; t)}{\partial \theta} + \frac{\partial C_{f,\sigma} \cdot N \cdot (\sigma; \lambda; \theta; t)}{\partial \sigma} = \frac{S \cdot (\sigma; \theta; \lambda; \varphi; t)}{\sigma}$$

radian frequency=(σ), time = t solution, latitude= λ , longitude = φ , frequency= σ , direction= θ , and group velocities = C_g (for latitude & longitude)

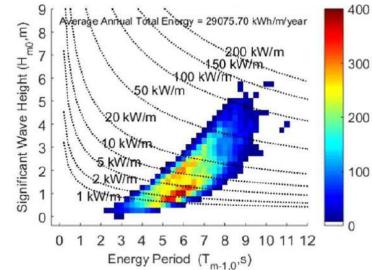
Sink terms

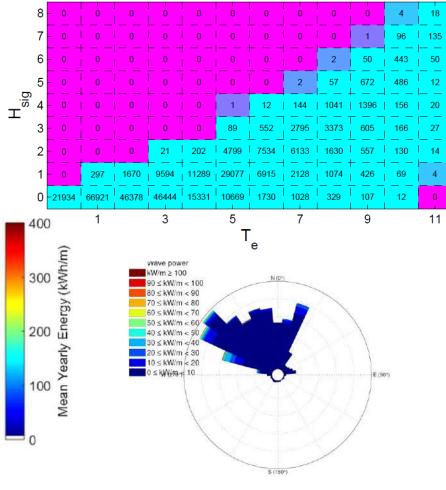
Wave theory and its translation into a working numerical model is presented in terms of the action density balance equation, with an overview of the physics and their importance in the resource analysis (per regional applicability)

 $S_{tot} = S_{in} + S_{nl4} + S_{ds,w} + S_{nl3} + S_{ds,b} + S_{ds,br} + S_{xx}$

Deep water S_{in} =Wind Input $S_{n/4}$ =Quadruplet Interactions $S_{ds,w}$ =Whitecapping

Nearshore/Shallow

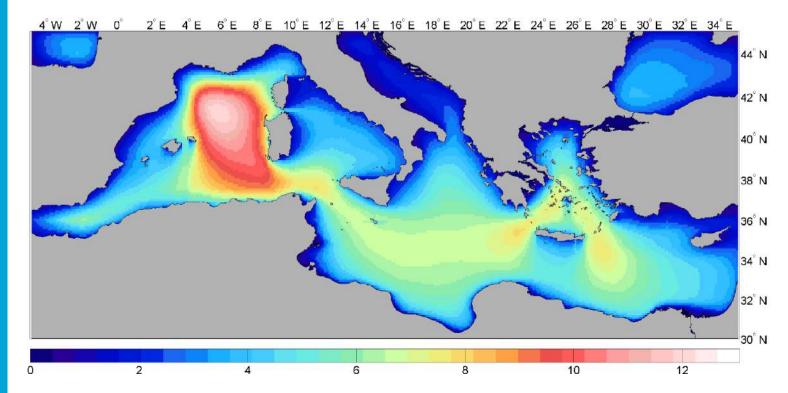

 $S_{n/3}$ =Triad Interactions $S_{ds,b}$ =Bottom Friction $S_{ds,br}$ =Depth Breaking S_{xx} =user defined



Presenting the Data

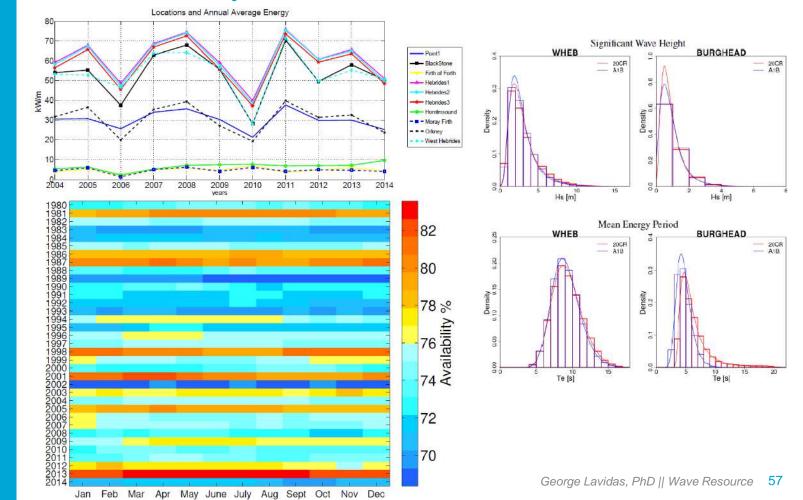
1. Location

- Bivariate distributions
- Wind & Wave roses
- Polar Diagrams
- Spectral conditions



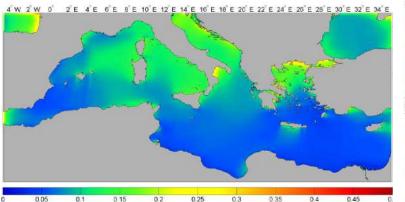
Presenting the Data

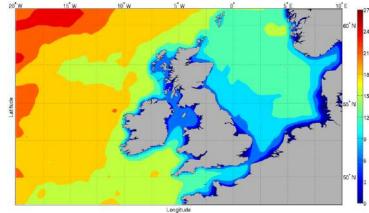
2. Spatial (Maps)

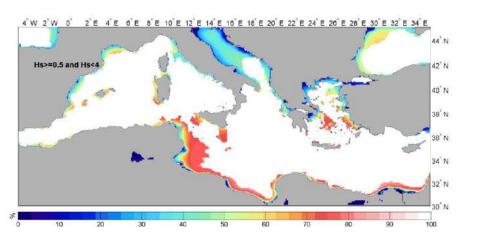


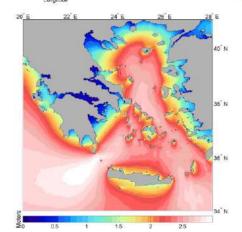
Presenting the Data

Annual	Seasonal	Monthly	Daily	
Resource Assessment (Intra-Annual, Decadal, Seasonal)		ra–Annual, Decadal, Seasonal)	Hourly Variability	
Variabil	ity Analysis (Intr	a–Annual, Decadal, Seasonal)	Neural Networks	
Mean Values		an Values	Instant variations (i.e. over seconds	
Maximum Values		num Values	Power Quality	
	High percentile	es (99 th , 95 th) Values		
	Dominant Me	etOcean Conditions		
	Coefficient o	f Variation (CoV)		
W	/ave Energy Dev	elopment Index (WEDI)		
	Av	ailability		
	Acc	cessibility		
	Climate	e Persistence		
		EVA		
	Skewness, Dis	stribution Statistics		
		Resource Cross-Correla	tion	
		Overlap of Production (multipl	e windows)	




Location Analysis





Spatial Analysis

Thank you very much for your attention !

If interested and would like more information:

G.Lavidas@tudelft.nl

