Wind farm design

TWIND course *Design and testing of offshore wind turbines and farms*

Michiel Zaaijer

Overview

- The design task
- The design process
- From task to solution: some reflections
- Design interactions
- Trends in farm design

Overview

- The design task
- The design process
- From task to solution: some reflections
- Design interactions
- Trends in farm design

Hardware components

Offshore wind turbine

Rotor-nacelle assembly

- Upscaling
- Gearbox → Direct drive →
 1 or 2 stage gearbox
- 2 blades (or keep 3?)
- More monitoring and remote control
- Helicopter access (or not?)

Support structure

- XXL Monopile
- Deeper and deeper water:
 Monopile → Jacket →
 Floating structures
- No transition piece
- Designed for installation (suction can, slip-joint, ...)

Electrical infrastructure

Components:

- cables
- transformers for voltage adaptations
- switch gears for protection and redundancy
- offshore connection platform (not always)
- onshore connection point

Power collection system

- More complex (optimised) topologies
- Higher voltage (from 33-36 kV to 66 kV)

Power transmission system

- AC connections → DC connections
- TSO responsible (instead of farm owner)

Facilities: Central platform

- Lean platform on monopile or at turbine (clustered)
- Include maintenance base
- Energy island (or too expensive?)

Facilities: Metmast

Issues and developments:

- Often subsidised by government, with public access to data
- (Floating) lidar: cheaper and more mobile
- More use of reanalysis data (hindcast data) and satellite data

Facilities: onshore premises

- More monitoring and remote control (as in RNA)
- Access to more and better environmental data
- Better predictions of weather (power & workability)

Activities (procedures)

Site selection, investigation and permitting

Developments:

- Developers pick (outside exclusion zones) →
- Governments pick
 - Designated areas
 - Specific wind farm site
- Governments do site investigation

Offshore Wind Energy Roadmap

Financing

- (complex) mixture of equity and debt
- Optimisations of cash flows (e.g. for tax benefits)
- Investment and risk transfer (after installation)

Procurement and logistics

- Transport over water (large components)
- Manufacturing facilities close to sea or waterways

Installation: Monopiles

- Larger vessels, anvils and positioning tools
- Pile driving without transition piece
- Noise mitigation (bubble screen or 'quiet seasons')
- New pile driving techniques (vibration, 'blue piling')

Installation: rotor-nacelle assembly

- Dedicated, large wind turbine installation vessels (TIV)
 Self-elevating (jack-up), self-propelled
- Pre-assembly in harbour versus offshore assembly

Installation: Floating wind turbines

Developments/opportunities:

- Complete pre-assembly in sheltered place
- Tow to place with tugboats

Installation: cables

- Easier trenching / cable protection, with less damage
- Use of remotely operated underwater vehicles (ROV) less/no diver operations: safer

Installation: Transformer platform

- Mostly 'Business as usual' (for oil & gas industry)
- Platform on monopile or at turbine: no extra equipment

Maintenance: Access/logistics 1

- Short-term decision support
- Crew comfort during transfer
- Safety

Maintenance: Access/logistics 2

Development of gangways for high and safe accessibility

Maintenance: Replacement large components

Issues and developments:

- (Expensive) Lifting equipment needs to be mobilised
- Built-in cranes to lower components to platform
- Modular versus integrated drive train designs (maintainability)

Dismantling

Issues and developments:

- Similar to installation (but less sensitive)
- Recycling of blades?
- Complete removal of piles?
- Leave foundations as artificial reefs?

Sources of information

https://www.4coffshore.com https://sea-impact.com

- Wind farms (existing and planned)
- Turbines
- Support structures
- Substations
- Cables
- Vessels
- ..

Overview

- The design task
- The design process
- From task to solution: some reflections
- Design interactions
- Trends in farm design

Design as part of OWE development

Select existing products – Modify equipment – Use existing concepts

Organisational setting OWF design

Contractual arrangements

Examples 'EPC' contract Examples Multi-contracting

- North Hoyle
- Scroby Sands
- Arklow
- Barrow
- Kentish Flats
- OWEZ

- Horns Rev I and II
- Rhyl Flats
- Thornton Bank
- Gunfleet Sands
- Sheringham Shoal
- London Array

More cooperative: consortia & alliances

Contract structure & supply chain integration influence responsibilities, risk distribution and design integration

Design as part of project lifecycle

Interaction design and planning

Overview

- The design task
- The design process
- From task to solution: some reflections
- Design interactions
- Trends in farm design

Objective of the design task

Functions
Constraints
Objectives

Constraints
Objectives

Core concepts
Configuration
Dimensions

Core concepts
Configuration
Dimensions

Characterisation of the offshore environment

Relevant physical factors

Relevant institutional factors

Differences w.r.t. onshore wind regarding functions

Functions

Function of the primary process: the energy chain

- Energy conversion
- Energy collection
- Energy transmission

Same working principles as for onshore wind possible

Examples of design solutions

"Classical" turbine concept and (AC) connections

Functions

Support structure functions:

- Keep nacelle in place
- Provide access to nacelle

Other working principles possible than for onshore wind

Working principles can be similar to those used in Oil & Gas

Examples of design solutions

- Adapted offshore monopile and GBS
- Floating structures

Functions

Logistics functions:

- Transporting equipment
- Transporting people
- Enabling installation

Other working principles <u>needed</u> than for onshore wind

Working principles can be similar to those used in Oil & Gas

Examples of design solutions

- Classical (onshore) O&M / installation procedures
- Adapted offshore installation equipment
- Adapted offshore access equipment

Differences w.r.t. onshore wind regarding constraints

Constraints

Changes in constraints w.r.t. onshore wind:

- Noise restriction
- Visual impact restriction
- Space restriction
- Logistics
- Material deterioration
- Hydrodynamic loading
- Wind loading
- Ice loading
- Effects on nature (e.g. bird migration)

More severe onshore

More severe offshore

Examples of design solutions

Design	Power [kW]	Tip speed [m/s]	Ratio (offshore/land)	
Vestas V66 (land)	1650	66	1.21	
Vestas V80 (offshore)	2000	80	1.21	
Nordex N60	1300	60	1.33	
Nordex N80 (offshore)	2000	80	1.55	
Bonus 1300 (land)	1300	62	1.1	
Bonus 2000 (offshore)	2000	68	1.1	
NEG Micon 1000/60 (land)	1000	57	1.19	
NEG Micon 2000/72 (offshore)	2000	68	1.19	

Higher tip speeds

Reduced visual impact:
Renewed interest
in 2-bladed turbines

Differences w.r.t. onshore wind regarding objectives

Objectives

Same objective as for onshore wind, but other relative contributions Note: more 'value', instead of (only) on 'costs'

- Wind turbine 34%
 Support structure & installation 24%
 □ Grid connection 15%
 □ Management 1%
- Operation & maintenance 23%
- Decommissioning 3%

Example of design solution (1)

Upscaling – trade-off between turbine performance and 'offshore' costs

Example of design solution (2)

Onshore (typical):

Aluminium

(3x)

- Cheaper to manufacture
- Cheaper material
- Easier to bend (installation)

Offshore (typical):

Copper

- Cheaper to install
- Bending no problem (large vessels available)
- Lower losses

Overview

- The design task
- The design process
- From task to solution: some reflections
- Design interactions
 - Physical interactions
 - Trade-offs in objective(s)
- Trends in farm design

Overview of physical interactions

Support structure ←→ Rotor nacelle

Loads

Response (aerodynamic damping)

Support structure ←→ Installation

Geometry – mass – working principles – installation loads

Interactions: The N2 diagram

This entry shows relation between element 4 and 2 originating from element 4

This entry shows relation between element 2 and 4 originating from element 2

N2 diagram - Example

Dealing with interactions (1)

Dealing with interactions (2)

- Clusters driven by internal coherence (interactions)
- Internal interactions maximised, external interactions minimised
- External interactions replaced by interface requirements
- Close cooperation in semi-autonomous cluster

Overview

- The design task
- The design process
- From task to solution: some reflections
- Design interactions
 - Physical interactions
 - Trade-offs in objective(s)
- Trends in farm design

Examples of trade-offs

Design solution / target	(Claimed) Positive effect	(Claimed) Negative effect
Low hub height	Low support / installation costs	Low energy yield
Large spacing	Low losses (wake)	Long cables / more space
Closer to shore	Low support / cable / maintenance costs	Low wind speed / yield
Floating support (vs fixed)	Easy to install	High costs for structure
DC (vs AC)	Low losses	High costs
Irregular layout (vs regular)	High yield / persistence	High (worst-case) fatigue loading

Support structure (concept trade-off)

Floating platform & installation

Lattice tower & installation steps

Dealing with trade-offs (1): Multi-criteria analysis

Criteria

β

Score

- Define criteria (performance indicators)
- Identify 'killer requirements'
- Define weighing factors
- Define performance classifications
 (Computed numbers when possible (e.g. costs)
 Otherwise e.g. 'Good' =8, 'Poor' =2)
- Use colour scheme for first impression
- Avoid ranking per criterion (not arithmetic)

Weight 0.7 0.3

A 9 5 7.8

B 7 3 5.8

 α

Example: Site selection

4

5

6

Criteria /

Location

Wind

climate

0 +

0 +

Dealing with trade-offs (2): Numerical optimisation

The wider the scope of the design variables and (consequentially) of the analysis, the more 'integration' (and the more complex – time consuming)

MDAO: Multidisciplinary design analysis and optimisation

Example: Layout and cable topology

Overview

- The design task
- The design process
- From task to solution: some reflections
- Design interactions
- Trends in farm design

New roles and goals

- Selling power
 - Energy quantity
 - Predictability / Persistence
 - Dispatchability
- Providing services
 - Frequency response
 - Reactive power control
 - Black start capability
- Customers: Power to X
 - Hydrogen / Gas
 - Heat
- Sustainability

Effects of wakes/layout on value

- Energy loss
- More variability / lower persistence
- Lower predictability

Can we design and control the farm to have less effects of wakes?

Dispatchability: wind power plant control

Hybrids to improve value and multifunctional use of space

Possible future developments (?):

- Integration with power to gas (hydrogen)
- Offshore farms combined with: storage, floating solar, aquaculture, ...

Environmental impact and circularity

Piling noise alleviation/mitigation

Environmental impact and circularity

Piling noise alleviation/mitigation

Recycling (blades)

Environmental impact and circularity

- Piling noise alleviation/mitigation
- Recycling (blades)
- Removal of foundations
- Removal of cables
- Reuse of rare materials

• ...

Conclusions

- The major challenge of designing an offshore wind farm is:
 - ... not to get something that works (= meets the constraints)
 - ... but something that works 'best' (= trade-offs in objective function)
- Many trade-offs lead to intuitive directions for the solutions:
 - Larger turbines
 - More reliable turbines
 - Turbines that are easier to install
- Insight in design process and tools help exceed the intuitive level
- Targets for wind farms are being raised (value & impact)

