

TWIND Online Summer School

Agenda

- Power module failure mechanism
- Heat flux detection method
- Artificial neural network
- ANN-based heat flux detection
- Test and verification
- Summary

Power Module Failure Mechanism

Detection methods:

- TSEP, thermal sensitive electrical parameter to monitor the degradation
- Heat flux, the degradation causes the Rth of thermal path to increase, which will influence the heat transfer rate through the layers

Thermal FEA Simulation

- ☐ When the degradation happens to the solder, the temperature drop is becoming larger from chip to heatsink, causing Rth decreasing
- ☐ The mapping between the temperature distribution (thermal) and the operating point (electric) can be used to indicate the level of solder degradation

Heat Flux Detection

Thermal Resistance: $R_{th} = \Delta T/power loss$

- ☐ Electric performances (power loss related) of power modules are temperature dependent
 - An electric and thermal coupled result
- ☐ Degradation is a non-linear and multiphysics process for multi-chip power modules
 - A complex thermal network model with multiple-input and multiple-out (MIMO)
 - A large number of look-up tables required
- ☐ Therefore, it is challenge to develop a model-based analytical method to implement heat flux condition monitoring online for multi-chip power modules

Artificial Neural Network

Data-driven machine learning technology has achieved extraordinary results in numerous domains in the past decade

Artificial Neural Networks (ANN) have found success in regression, classification and clustering problems

Problem No labeled data? **Supervised** Unsupervised learning learning Category Quantity Lower category or Group Group or Lower Dim Dimension Dimensionality Clustering Regression Classification reduction Support Vector Machine Neural Network K-means Neural Network Gaussian Mixture **PCA** Logistic Regression LDA Random Forest Ridge Regression DBSCAN Spectral Clustering Random Forest Isomap **Naive Bayes** Support Vector Machine Hierarchical Clustering Autoencode

- Introduction of ANN into heat flux detection could provide a feasible method to monitor power module degradation
 - ANN structure with available features as input and output
 - Regression model to describe the mechanism
 - Classification model to identify the degradation level

ANN-based Heat Flux Detection I

Supervised machine learning with labelled data

First stage: Regression model to quantify the power loss

Second stage: Classification model to differentiate degradation level

ANN-based Heat Flux Detection II

- First stage: a series of sub-NNs (neural networks), representing a certain pattern at different DL (degradation level). For a given electrical operating point labeled by OPL (operational power loss), the power losses inside the module will create a temperature distribution under this DL.
- Second stage: one NN with the inputs from all the sub-NNs at first stage to recognise the pattern
 of electrical operating point and temperature distribution and differentiate the related DL.

Test Rig Design

Bottom surface

Degradati on level	Number of low TC pads	Junction to case thermal resistance (K/W)	Normalized thermal resistance
DLo	0	0.946	1 (initial state)
DL 1	1	1.052	1.112
DL 2	2	1.158	1.224
DL ₃	3	1.264	1.336
DL 4	4	1.370	1.448
DL 5	5	1.476	1.560

Experimental Verification Result 1

 At each degradation level (DLo,1...5), loading current increases from 10A, 20A,...,60A

 Record thermal and electrical parameters as labelled data to train ANN model for each DL

Pre-set target degradation level

Experimental Verification Result 2

 At each degradation level (DL1...5), apply loading current profile

 Record thermal and electrical parameters to validate the trained ANN model

Pre-set target degradation level

Experimental Verification Result 3

ANN model evolution from shallow to deep neural network:

Tested output degradation level	DL 0	537 8.9%	0 0.0%	1 0.0%	0 0.0%	0 0.0%	0 0.0%	99.8% 0.2%
	DL 1	0 0.0%	1055 17.6%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	100% 100%
	DL 2	1 0.0%	0 0.0%	1016 16.8%	0 0.0%	1 0.0%	11 0.2%	95.0% 5.0%
	DL 3	0 0.0%	0.0%	11 0.2%	1062 17.7%	10 0.2%	0 0.0%	98.1% 1.9%
	DL 4	0 0.0%	0 0.0%	12 0.2%	28 0.5%	1182 19.6%	0 0.0%	94.9% 5.1%
	DL 5	0 0.0%	0 0.0%	0 0.0%	0.0%	0 0.0%	1083 18.0%	100% 100%
Ē		99.8% 0.2%	100% 0.0%	97.8% 2.2%	97.4% 2.6%	99.1% 0.9%	99.0% 1.0%	98.8% 1.2%
	·	OLO	Oh)	452	dr ₃	OLA	DL5	

Pre-set target degradation level

Summary and Future Work

- The deep NN-based heat flux detection method is proposed to monitor the module degradation
- The proposed method can successfully detect the degradation level even under complex operating conditions
- Future work is to verify the method with a more complicated multi-chip power module, i.e., PrimePack IGBT module

Contact us

GLASGOW

Inovo 121 George Street Glasgow G1 1RD

T +44 (0)333 004 1400

BLYTH

National Renewable
Energy Centre
Offshore House
Albert Street
Blyth, Northumberland
NE24 1LZ

T +44 (0)1670 359 555

LEVENMOUTH

Fife Renewables
Innovation Centre (FRIC)
Ajax Way
Leven
KY8 3RS

T +44 (0)1670 359 555

HULL

O&M Centre of Excellence Ergo Centre Bridgehead Business Park Meadow Road, Hessle HU13 oGD

