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Power Module Failure Mechanism vavRvXCK caTAPULT
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*  TSEP, thermal sensitive electrical parameter to monitor the degradation
* Heat flux, the degradation causes the Rth of thermal path to increase, which will influence the heat

transfer rate through the layers
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Solder degraded Chip

Heatsink Thermal Resistance:

R.= (Tc-Th)/power loss
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O When the degradation happens to the solder, the temperature drop is becoming larger from
chip to heatsink, causing Rth decreasing

O The mapping between the temperature distribution (thermal) and the operating point (electric)
can be used to indicate the level of solder degradation
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/ Electro-thermal modelling \
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Thermal Resistance: R, = AT/power loss

U Electric performances (power loss related) of power modules 0 -
are temperature dependent
* Anelectricand thermal coupled result
 Degradation is a non-linear and multiphysics process for i-;jf—-
multi-chip power modules i
* Acomplexthermal network model with multiple-input : — / |
and multiple-out (MIMO) N Multi-chip in MW B
* Alarge number of look-up tables required l' l'
Coupling analysis
O Therefore, it is challenge to develop a model-based analytical L. e, L _
method to implement heat flux condition monitoring online 5@{% “Current sharing
for multi-chip power modules | aﬁ rﬁ' j ~ -Thermal runaway

The on-line solution for thermal-
\ mechanical performance is complex. /
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Artificial Neural Network

Problem

O Data-driven machine learning technology
has achieved extraordinary results in

Input layer | Hidden layers

i Output layer

~ Output n

numerous domains in the past decade

L Artificial Neural Networks (ANN)
have found success in regression,

Supervised
learning

Category Quantity
quantity

labeled
data?

Unsupervised
learning

Group Group or
Lower Dim.

Lower
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fuput o ifi i i - Dimensionalit
classification and cluste rng Classification| |Regression| |Clustering e y
Neural Network Support Vector Machine K-means
p ro b | e m S Logistic Regression Neural Network Gaussian Mixture PCA
Random Forest Ridge Regression DBSCAN LDA
Naive Bayes Random Forest ~ Spectral Clustering Isomap
Support Vector Machine Lasso Hierarchical Clustering Autoencoder

O Introduction of ANN into heat flux detection could provide a
feasible method to monitor power module degradation

*  ANN structure with available features as input and output
* Regression model to describe the mechanism

* C(Classification model to identify the degradation level
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Supervised machine learning with labelled data Input - Output
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* First stage: a series of sub-NNs (neural networks), representing a certain pattern at different DL
(degradation level). For a given electrical operating point labeled by OPL (operational power
loss), the power losses inside the module will create a temperature distribution under this DL.

* Second stage: one NN with the inputs from all the sub-NNs at first stage to recognise the pattern
of electrical operating point and temperature distribution and differentiate the related DL.

. .

.| Temperature: Measured Measurement inputs :

T Chip '| heatsink, ambient, electrical for CM al -ﬂf :

e —sold '| water-cooling parameters or aigonithm '
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The difference between OPL and EPL could be used
as the indicators for health state recognition.

Y
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Experimental Verification Result 1

Current control

At each degradation
level (DLo,1...5), loading
current increases from
10A, 20A,...,60A
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Record thermal and
electrical parameters as
labelled data to train
ANN model for each DL
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Experimental Verification Result 2

At each degradation
level (DL1...5), apply
loading current profile

Record thermal and
electrical parameters to
validate the trained
ANN model
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ANN model evolution from shallow to deep neural network:
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Summary and Future Work WAVRVZCK catAPULT

 The deep NN-based heat flux detection method is
proposed to monitor the module degradation

« The proposed method can successfully detect the
degradation level even under complex operating
conditions

« Future work is to verify the method with a more
complicated multi-chip power module, i.e., PrimePack __ > I
IGBT module i

Time=10s 1xRthO Temperature (degC)

B. Hu et al., "Deep Learning Neural Networks for Heat-Flux Health Condition Monitoring Method of Multi-Device Power Electronics System," 2019
IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019, pp. 3769-3774, doi: 10.1109/ECCE.2019.8912666.
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