

Development of an Optimized Operation & Maintenance Strategy of Offshore Wind Farms

PhD Candidate: Mingxin Lit
Promotor: Rudy R. Negenborn
Co-promotor: Xiaoli Jiang
TWIND Summer School 08/07/2021

Overview

- Self Introduction
- PhD Project
- Research Progress
- Published articles

Self Introduction

PhD candidate: Mingxin Li

Institution: Delft University of Technology

Period: September 2019 ~ present

Promotor: Prof. Rudy R. Negenborn

Co-promotor: Dr. Xiaoli Jiang

PhD topic: Development of an Optimized Operation & Maintenance Strategy of

Offshore Wind Farm

Email: m.li-6@tudelft.nl

Breakdown of operational expenditures of an offshore wind farm [1]

Average water depth and distance to shore of offshore wind farms in Europe [2]

Project Objective:

Develop a mathematical model for the offshore wind farm O&M strategy in order to reduce costs and increase power production during the full lifetime

Scope of Work:

• A basic maintenance model integrating multiple types of maintenance opportunities

• Investigating influence of uncertainties on the performance of the maintenance model

• Dynamic maintenance strategy considering updating data

• Joint optimization of O&M strategies integrating logistics and spare parts management

• Adaptability of the developed O&M model in different scenarios

➤ Work package 1: Developing a maintenance model integrating multiple types of maintenance opportunities (completed)

 $\bullet \ Degradation-based \ opportunity \ \bullet \ Multiple \ age-based \ opportunity \\$

- ➤ Work package 2: Investigating influence of uncertainties on performance of maintenance model (in progress)
- Deviation of predicted and real failure times Stochastic maintenance quality

• Stochastic attributes of time to failure

• Uncertain repair cost and time

Work package 3: Dynamic maintenance strategy considering updating data

 New information and data on degradation and remaining useful life of components becomes available

- Updating maintenance decisions
- An adaptive and dynamic maintenance strategy

Work package 4: Joint optimization of O&M strategies integrating logistics and spare parts management

- Spare parts management policy
- Logistics options
- Meteorological conditions

Work package 5: Adaptability of the developed O&M model in different scenarios

- Configuration and capacity
- Geographic location
- Decision maker and beneficiary

Research Progress (Work package 1)

- 250MW offshore wind farm located at North Sea
- ➤ The operation lifetime:20 years
- Five critical components (generator, bearing, gearbox, rotor-blades, pitch system)
- ➤ Input data is collected from literature and report [1-3]

			_	
Component	Shape parameters	Scale parameters (days)	Failure replacement (k€)	Preventive replacement (k€)
Rotor&blade	3	1847	215	55
Bearing	2	1811	60	15
Gearbox	3	1477	260	65
Generator	2	1594	90	25
Pitch system	3	1144	46	10

[1]B. Le and J. Andrews, "Modelling wind turbine degradation and maintenance," Wind Energy, vol. 19, pp. 571-591, May 2015.

^[2] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, "Definition of a 5-MW Reference Wind Turbine for Offshore System Development," National Renewable Energy Lab. (NREL), United States, NREL/TP-500-38060, February 2009.

^[3] B. R. Sarker and T. I. Faiz, "Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy," Renewable Energy, vol. 85, pp. 104-113, January 2016.

Research Progress

Annual costs versus combinations of decision variables Amin, Amax, ζ

Research Progress

- Developed strategy (degradation, incident, and multiple age-based opportunities)
- Conventional strategy 1 (degradation and incident-based opportunities)
- Conventional strategy 2 (degradation, incident, and single age-based opportunities)

Comparison of three opportunistic maintenance strategies.

Published articles

Journal articles:

- [1] **Li**, **M**.*, Jiang, X., Negenborn R, R., 2021. Opportunistic maintenance for offshore wind farms with multiple-component age-based preventive dispatch. *Ocean Engineering* 231, 109062.
- [2] **Li, M.**, Jiang, X., Carroll J., Negenborn R, R., A robust multi-objective optimization of maintenance strategy for offshore wind farms. To be submitted.

Conference articles:

- [1] **Li**, **M.***, Jiang, X., Polinder, H., Negenborn R, R., 2020. A Review of Maintenance Strategy Optimization for Wind Energy. *In: Proceedings of the 4th International Conference on Renewable Energies Offshore*, Lisbon, Portugal, pp. 469-480.
- [2] **Li**, **M.***, Jiang, X., Carroll J., Negenborn R, R., 2021. Influence of uncertainty on performance of opportunistic maintenance strategy for offshore wind farms. Accepted. *Global OCEANS 2021*, San Diego, United States.

Thank you for the attention!

