

Agenda

- What is a mooring system?
- Brief mooring theory
- Tools used
- Design parameters
- Inspiration Existing mooring systems
- Standard components
- Mooring materials
- Future advancements

What is a mooring system?

- Maintain it's position
- Provide restoring force to platform motions and forces
- neighbouring assets or export cable

Mooring theory

$$F(t) = C_M \rho V \dot{v}(t) + C_D \frac{1}{2} \rho A v(t) |v(t)|$$

Inertia

Drag

$$K_c = 2\pi \frac{A}{D}$$

Inertia Dominated

KC < 8

Drag Dominated

KC > 25

Hand calculations

$$S = \sqrt{d \cdot \left(\frac{2 \cdot F}{w} - d\right)}$$

$$X = \left(\frac{F}{w} - d\right) \cdot \ln\left(\frac{S + \frac{F}{w}}{\frac{F}{w} - d}\right)$$

$$V = w \cdot S$$

MOSES

Modular Observation Solutions for Earth Systems

Events and Trends: Impact of Disturbances on Earth Systems

Orcina - OrcaFlex

Design parameters

- 1. Stop platform from drifting away
- 2. What load path can the anchors handle?
- 3. Ensure platform can survive design life in chosen environment
 - 1. ULS
 - 2. ALS
 - 3. FLS
- 4. Reduce platform excursion
- 5. Prevent snatch loads on platform
- 6. Prevent anchor uplift (if using drag anchors)
- 7. Cost of mooring lines and anchor
- 8. Installation complexity and cost
- 9. Mooring line integrity

Inspiration - Existing mooring systems

Stones¹

- Extensive experience from O&G industry
- A lot of inspiration can be taken and lessons learned
- Design parameters vary compared to **FOW**
- Many more assets for FOW = more mooring lines
- 1 https://www.offshore-technology.com/wp-content/uploads/image-digitalinsightresearch/Archive/nri/offshore/Stones.jpg
- 2- https://www.popularmechanics.com/technology/infrastructure/g2926/7-of-the-biggest-offshore-structures/
- 3 https://www.offshore-mag.com/field-development/article/16758212/shells-perdido-sets-mooring-record

Different mooring types

Standard components

Mooring materials

Chain

(b) Studless Chain

- Stud or studless
- Varying grades, usually R₃ or R₄
- Current maximum of 185mm
- High MBL and fatigue strength
- Very heavy (~700kg per link)

Synthetic Rope

- HMPE, Polyester or Nylon
- Introduce compliance into system
- Very light (can be neutrally buoyant)
- High cost installation reels
- Not extensively proven for permanent moorings

Steel Wire

- Spiral strand wire rope
- Lighter than chain
- Well proven for FPSOs
- Potential use in catenary and taut systems

Future advancements

Load Reduction Devices

Each Seaflex Spring consists of a shock absorber made of a special, homogenous rubber and two continous U-bars that form an eye at each end. All the metal components are of high grade stainless steel. A:5.91 in./150 mm B:2.32 in./59 mm C:25.67 in./652 mm

Installation Aids

50 – 70% reduced peak load 30% reduced fatigue load

Future advancements – Shared Anchors

- Multiple mooring lines coming from the same anchor
- Anchor must be capable of taking multiple load paths
 - Suction caisson or pile anchor
- Reduce anchor fabrication and install
- Problems around failure
- More research needed

Summary

- Prevent platform excursions to prevent damage to export cable or surrounding assets
- Provide restoring forces and moments to platform loads
- Well established analysis from O&G Industry

- Lots of potential new advancements possible for FOW
- New design methodologies possible
- Extensive research, analysis and field tests needed

Contact us

Email us: info@ore.catapult.org.uk

Visit us: <u>ore.catapult.org.uk</u>

Engage with us:

GLASGOW BLYTH LEVENMOUTH GRIMSBY ABERDEEN CORNWALL LOWESTOFT PEMBROKESHIRE CHINA

