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Introduction

Floating offshore wind turbines (FOWTs):
• Stronger and steadier wind resources
• Efficient installation and maintenance

Challenges
• Commercial feasibility of FOWTs

• Standardization of offshore wind system is 
difficult

• Modeling and design tools to capture the 
physical behavior 
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Figure 1: Components of floating offshore system[1] 

[1] Simon B., et al., Towards credible CFD simulations for floating offshore wind turbines,   
Ocean Engineering, 2020 2
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Motivation

• Understand Non-Linear Hydrodynamic behaviour
• Engineering models are based on potential flow(PF) 

theory, Morison’s equation, or a combination of both.
• Engineering tools tend to under-predict the 

loads/motion at it’s surge and pitch natural 
frequencies[2]

• Therefore, higher fidelity models is required study non-
linear behavior 

• Computational cost
• Navier-Stokes based solvers are computationally 

demanding when compared to engineering models
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[2] Robertson et. al., OC6 Phase1:Investigating the underprediction of lowfrequency hydrodynamic loads 
and responses of a floating wind turbine , NREL, 2020
[3] Maija et. al., Comparison of Hydrodynamic Load Predictions Between Engineering Models and 
Computational Fluid Dynamics for the OC4-DeepCwind SemiSubmersible, NREL, 2014

Figure 2: Applicability of engineering model [3]
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Research Objectives

• CFD solver for a semisubmersible 
floater    

• Implementation of Mesh adaptation 
technique

• Fully-coupled aero-hydro simulations

Figure 3: OC5 DeepCwind FOWT semisubmersible 
with a rigid tower (source: NREL)
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Numerical method

• YALES2 LES Solver
• Mainly developed at CORIA
• 4th-order finite-volume 
• 4th order Runge-Kutta time integration
• Unstructured meshes with adaptive grid refinement
• Massively parallelised (>32,000 procs)

http://www.coria-cfd.fr
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http://www.coria-cfd.fr/
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Why YALES2?

• Scalability
• Mesh adaptation
• Aerodynamics model - Actuator line 

model 

Figure 4: YALES2 Scalability [4]

[4] https://yales2.coria-cfd.fr/ 6
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Numerical modelling – Fluid structure interaction

• Movement of the semisubmersible platform
• In YALES2, Fluid Structure Interactions (FSI) is 

formulated using an Arbitrary Lagrangian Eulerian 
(ALE) approach

• Air-water interface
• Two-phase flow is solved using incompressible 

solver with Level set method and Ghost fluid 
method (GFM)

• In YALES2, this two-phase flow solver (mainly used 
for spray applications) is abbreviated as SPS (spray) 
solver  

Figure 5: Simulation of semisubmersible 
platform [5] 

[5] www.cape-horn-eng.com 7
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Development of  YALES2 Hydrodynamic solver

SPS-ALE solver

ALE Solver

Multiphase 
(Spray) Solver

Mesh 
adaptation

FSI - ALE Solver

FSI-SPS-ALE solver

wave generator

wave-structure 
interactions

Note:
ALE – Arbitrary Lagrangian Eulerian
SPS – Spray solver
FSI – Fluid Structure Interactions

Figure 6: Overview of solver code development
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Ongoing work

• SPS-ALE validation 
• 2D box with prescribed motion
• Validated against OpenFOAM results

[3] www.cape-horn-eng.com 9
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Figure 7: Validation test case - 2D box 
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Questions?

Contact: l.rameshreddy@tudelft.nl10
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