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Composites in wind turbine blades

Increasing size, weight and loads

Structural integrity while minimising weight

Load bearing components e, Sa B
Spar cap: flap wise bending momentum
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Thermoplastic composites (TC)
Figure 1. Use of carbon and glass fibre spar caps as a function of blade length [
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Laser-assisted automated tape placement warr)

Advantages
Design flexibility and integration

In-situ consolidation Consolidation

/ Roller

Disadvantages

Expensive materials and technology
Current capabilities

Consolidated
Tape

Pre-impregnated tapes (prepreg) Placement

Direction

Roller side
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Figure 3. LATP main components and working principle scheme [l

Tool side \.
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Figure 2. Dry fibre bundles on surface tape after compaction in LATP of CF/PEKK
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Laser-assisted automated tape placement

Placement speed vs. void content

Simplified flat part 6 -
Part: 87.5 m x 600 mm x 40 mm o ’
Tape thickness: 0.6 mm . )
Tape width: 300 mm §4 1. -
20% extra time % 34 e : A CFIPPS - LATP
= o CF/PEEK - TATP
Quiality criteria Void content (%) < 2% Z e « * " CFIPEEK - LATP
Manufacturing time <10h > 400 mm/s . r
Table 1. LATP quality criteria and manufacturing time estimated targets for a 0 ' ' ' ' ' ' '
Simplified rectangular flat composite part. 0 100 200 300 400 500 600 700 800

Placement speed (mm/s)

Figure 4. Summary of void content versus placement speed for CF/PEEK and

CF/PPS UD composites manufactured by means of LATP and hot gas torch
ATP (TATP).
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Laser-assisted automated tape placement

Placement speed vs. void content
Simplified flat part
Part: 87.5 m x 600 mm x 40 mm
Tape thickness: 0.6 mm

Tape width: 300 mm
20% extra time
Quality criteria Void content (%) < 2%
Manufacturing time <10h > 400 mm/s

Table 1. LATP quality criteria and manufacturing time estimated targets for a
Simplified rectangular flat composite part.
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Figure 5. Summary of void content versus placement speed for CF/PEEK and

CF/PPS UD composites manufactured by means of LATP and hot gas torch
ATP (TATP).
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In-situ consolidation and intimate contact

Heating phase ) Consolidation phase ' Release
' Tape deformation .
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Figure 6. LATP in-situ consolidation governing mechanisms



In-situ consolidation and intimate contact

Heating phase ) Consolidation phase ' Release
' Tape deformation .
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Figure 7. Surface roughness flattening representation from
Lee, W et al. [P, adapted by Grouve, W. et al. 161,
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Figure 6. LATP in-situ consolidation governing mechanisms
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In-situ consolidation and intimate contact
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Figure 7. Surface roughness flattening representation from
Lee, W et al. [P, adapted by Grouve, W. et al. 161,
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Figure 8. Schematic representation of percolation flow of a molten resin through
a fibre bed, following Darcy’s law 4,
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Degree of intimate contact optimisation

Squeeze flow Percolation flow
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Degree of intimate contact optimisation

Squeeze flow
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Figure 9. DEIC as a function of placement speed and
compaction force on CF/PEKK UD tapesl? .
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Degree of intimate contact optimisation

Squeeze flow
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Figure 9. DEIC as a function of placement speed and
compaction force on CF/PEKK UD tapesl? .

sTEPfﬁyleD

Percolation flow

5
2 2
. (1-v)L2 (T 16 .
imp = ’ Lhex =
p 2K | hex(Ve, R) AP(Papp) , 97vVE
_05
o,
| =
2 0.4
2
&
g 0.3
S
- 0.2 )
2 0.25 MPa
= 0.5 MPa
Lo1 0.75 MPa
b ——1.00 MPa
E . —1.25 MPa
350 400 450 500 550
Temperature [°C]
Figure 10. Time of impregnation as a
function of nip point temperature and
compaction pressure in LATP of
CF/PEEK UD tapes[4] . * ¥ i TgisEmje:thasl‘r‘ecei\!ed’jur_ldmg%);;
the European Union’s Horizon
'; : research and innovation programme

* ok under grant agreement No. 860737.




13

Degree of intimate contact optimisation

Squeeze flow
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Figure 9. DEIC as a function of placement speed and
compaction force on CF/PEKK UD tapesl? .
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Conclusions

Current achievable LATP placement speeds of thermoplastic composites cannot satisfy wind
energy industry needs

Technology and raw material costs are elevated — economy of scale

Percolation and squeeze flow coexist during in-situ consolidation
Degree of intimate contact is a function of the dry fibre bed depth
Heavier tows ease fibre bed impregnation, while carbon fibre hinders intra-tow impregnation.

In-situ consolidation optimisation requires:

Process optimisation
Optimum pressure: favour squeeze and percolation flow vs. increase fibre volume fraction
Optimum temperature: minimise viscosity vs. thermal degradation
Material optimisation
Matrix viscosity
Surface roughness
Dry fibre bed depth
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