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▪ Increasing size, weight and loads

▪ Structural integrity while minimising weight

▪ Load bearing components

▪ Spar cap: flap wise bending momentum

▪ Peak and fatigue loads

▪ Carbon fibre composites

▪ Higher specific properties than glass fibre 
composites

▪ Micro-buckling sensitivity 

▪ Fibre alignment

▪ Thermoplastic composites (TC)

▪ Reusable and Recyclable

▪ Infinite shelf-life and in-situ consolidation

▪ Expensive

Composites in wind turbine blades

Figure 1. Use of carbon and glass fibre spar caps as a function of blade length [1]

3



▪ Advantages

▪ Design flexibility and integration

▪ In-situ consolidation

▪ Disadvantages
▪ Expensive materials and technology

▪ Current capabilities

▪ Pre-impregnated tapes (prepreg)

Laser-assisted automated tape placement (LATP)

Figure 3. LATP main components and working principle scheme [3]

Figure 2. Dry fibre bundles on surface tape after compaction in LATP of CF/PEKK 

UD tapes[2] .
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Laser-assisted automated tape placement

• Placement speed vs. void content

• Simplified flat part

• Part: 87.5 m x 600 mm x 40 mm

• Tape thickness: 0.6 mm

• Tape width: 300 mm

• 20% extra time
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Figure 4. Summary of void content versus placement speed for CF/PEEK and 
CF/PPS UD composites manufactured by means of LATP and hot gas torch 
ATP (TATP).

Quality criteria Void content (%) < 2%

Manufacturing time < 10 h > 400 mm/s

Table 1. LATP quality criteria and manufacturing time estimated targets for a 

Simplified rectangular flat composite part.
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Laser-assisted automated tape placement

• Placement speed vs. void content

• Simplified flat part

• Part: 87.5 m x 600 mm x 40 mm

• Tape thickness: 0.6 mm

• Tape width: 300 mm

• 20% extra time

Figure 5. Summary of void content versus placement speed for CF/PEEK and 
CF/PPS UD composites manufactured by means of LATP and hot gas torch 
ATP (TATP).

Quality criteria Void content (%) < 2%

Manufacturing time < 10 h > 400 mm/s

Table 1. LATP quality criteria and manufacturing time estimated targets for a 

Simplified rectangular flat composite part.
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In-situ consolidation and intimate contact

Figure 6. LATP in-situ consolidation governing  mechanisms [4]
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In-situ consolidation and intimate contact

Figure 6. LATP in-situ consolidation governing  mechanisms [4]

Figure 7. Surface roughness flattening representation from 

Lee, W et al. [5], adapted by Grouve, W. et al. [6] .
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In-situ consolidation and intimate contact

Figure 8. Schematic representation of percolation flow of a molten resin through 

a fibre bed, following Darcy’s law [4].

Figure 6. LATP in-situ consolidation governing  mechanisms [4]

Figure 7. Surface roughness flattening representation from 

Lee, W et al. [5], adapted by Grouve, W. et al. [6] .
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Degree of intimate contact optimisation

▪ Squeeze flow ▪ Percolation flow
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𝑃app(𝑡): Applied pressure

𝜂0(𝑇 𝑡 ): zero−shear viscosity
𝑡𝑐: compaction time
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Δ𝑃(𝑃app): pressure difference

𝜂(𝑇): dynamic viscosity
𝑉𝑓: fibre volume fraction

𝐾⊥,hex: fibre bed permeability

𝐿: impregnation distance
𝑅: fibre tow radius
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Figure 9. DEIC as a function of placement speed and 

compaction force on CF/PEKK UD tapes[2] .
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Figure 10. Time of impregnation as a 

function of nip point temperature and 

compaction pressure in LATP of 

CF/PEEK UD tapes[4] .

Figure 9. DEIC as a function of placement speed and 

compaction force on CF/PEKK UD tapes[2] .
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Figure 11. Dic contact as a function of impregnated 

depth of the dry  fibre bed in LATP of CF/PEEK 

UD tapes[4] .

Figure 9. DEIC as a function of placement speed and 

compaction force on CF/PEKK UD tapes[2] .
Figure 10. Time of impregnation as a 

function of nip point temperature and 

compaction pressure in LATP of 

CF/PEEK UD tapes[4] .
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Conclusions

▪ Current achievable LATP placement speeds of thermoplastic composites cannot satisfy wind 
energy industry needs

▪ Technology and raw material costs are elevated – economy of scale

▪ Percolation and squeeze flow coexist during in-situ consolidation
▪ Degree of intimate contact is a function of the dry fibre bed depth

▪ Heavier tows ease fibre bed impregnation, while carbon fibre hinders intra-tow impregnation.

▪ In-situ consolidation optimisation requires:
▪ Process optimisation

▪ Optimum pressure: favour squeeze and percolation flow vs. increase fibre volume fraction

▪ Optimum temperature: minimise viscosity vs. thermal degradation

▪ Material optimisation

▪ Matrix viscosity

▪ Surface roughness

▪ Dry fibre bed depth
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