

raining network in floating wind energy

Automated tape placement of carbon fibre reinforced thermoplastics for offshore wind turbine blades

Alejandro Jiménez del Toro

ÉireComposites Technical University of Delft

Agenda

- Composites in wind turbine blades
- Laser-assisted tape placement
- In-situ consolidation
- Degree of intimate contact optimisation
- Conclusions
- References

Composites in wind turbine blades

- Increasing size, weight and loads
- Structural integrity while minimising weight
 - Load bearing components
 - Spar cap: flap wise bending momentum
 - Peak and fatigue loads
- Carbon fibre composites
 - Higher specific properties than glass fibre composites
 - Micro-buckling sensitivity
 - Fibre alignment
- Thermoplastic composites (TC)
 - Reusable and Recyclable
 - Infinite shelf-life and in-situ consolidation
 - Expensive

Figure 1. Use of carbon and glass fibre spar caps as a function of blade length [1]

Laser-assisted automated tape placement (LATP)

- Advantages
 - Design flexibility and integration
 - In-situ consolidation
- Disadvantages
 - Expensive materials and technology
 - Current capabilities
- Pre-impregnated tapes (prepreg)

Roller side

Figure 2. Dry fibre bundles on surface tape after compaction in LATP of CF/PEKK UD tapes^[2].

Figure 3. LATP main components and working principle scheme [3]

Laser-assisted automated tape placement

- Placement speed vs. void content
- Simplified flat part
 - Part: 87.5 m x 600 mm x 40 mm
 - Tape thickness: 0.6 mm
 - Tape width: 300 mm
 - 20% extra time

Quality criteria	Void content (%)	< 2%
Manufacturing time	< 10 h	> 400 mm/s

Table 1. LATP quality criteria and manufacturing time estimated targets for a Simplified rectangular flat composite part.

Figure 4. Summary of void content versus placement speed for CF/PEEK and CF/PPS UD composites manufactured by means of LATP and hot gas torch ATP (TATP).

Laser-assisted automated tape placement

- Placement speed vs. void content
- Simplified flat part
 - Part: 87.5 m x 600 mm x 40 mm
 - Tape thickness: 0.6 mm
 - Tape width: 300 mm
 - 20% extra time

Quality criteria	Void content (%)	< 2%
Manufacturing time	< 10 h	> 400 mm/s

Table 1. LATP quality criteria and manufacturing time estimated targets for a Simplified rectangular flat composite part.

Figure 5. Summary of void content versus placement speed for CF/PEEK and CF/PPS UD composites manufactured by means of LATP and hot gas torch ATP (TATP).

In-situ consolidation and intimate contact

Figure 6. LATP in-situ consolidation governing mechanisms [4]

In-situ consolidation and intimate contact

Figure 7. Surface roughness flattening representation from Lee, W et al. [5], adapted by Grouve, W. et al. [6].

In-situ consolidation and intimate contact

Figure 7. Surface roughness flattening representation from Lee, W et al. [5], adapted by Grouve, W. et al. [6].

Figure 8. Schematic representation of percolation flow of a molten resin through a fibre bed, following Darcy's law [4].

Figure 6. LATP in-situ consolidation governing mechanisms [4]

Squeeze flow

$$\bar{t}_{ic} = \left(D_{ic,0}^{-5} - 1\right) \left(\frac{1}{5} \frac{d_0^2}{\left(1 + \frac{w_0}{d_0}\right) a_0^2}\right) \frac{\eta_0(T)}{P_{\text{app}}}$$

 $P_{\text{app}}(t)$: Applied pressure

 $\eta_0(T(t))$: zero-shear viscosity

 t_c : compaction time

 a_0 , d_0 , w_0 : surface roughness

Percolation flow

$$t_{\text{imp}} = \frac{(1 - V_f)L^2}{2K_{\perp,\text{hex}}(V_f, R)} \frac{\eta(T)}{\Delta P(P_{\text{app}})}; \quad K_{\perp,\text{hex}} = \frac{16}{9\pi\sqrt{6}} \left(\sqrt{\frac{V_{f_{max}}}{V_f}} - 1\right)^{\frac{1}{2}} R^2$$

 $\Delta P(P_{\text{app}})$: pressure difference

 $\eta(T)$: dynamic viscosity

 V_f : fibre volume fraction

 $K_{\perp,\text{hex}}$: fibre bed permeability

L: impregnation distance

R: fibre tow radius

Squeeze flow

$$\bar{t}_{ic} = \left(D_{ic,0}^{-5} - 1\right) \left(\frac{1}{5} \frac{d_0^2}{\left(1 + \frac{w_0}{d_0}\right) a_0^2}\right) \frac{\eta_0(T)}{P_{\text{app}}}$$

Figure 9. DEIC as a function of placement speed and compaction force on CF/PEKK UD tapes^[2].

Percolation flow

$$t_{\text{imp}} = \frac{\left(1 - V_f\right)L^2}{2K_{\perp,\text{hex}}(V_f, R)} \frac{\eta(T)}{\Delta P(P_{\text{app}})}; \quad K_{\perp,\text{hex}} = \frac{16}{9\pi\sqrt{6}} \left(\sqrt{\frac{V_{f_{max}}}{V_f}} - 1\right)^{\frac{1}{2}} R^2$$

Squeeze flow

$$\bar{t}_{ic} = \left(D_{ic,0}^{-5} - 1\right) \left(\frac{1}{5} \frac{d_0^2}{\left(1 + \frac{w_0}{d_0}\right) a_0^2}\right) \frac{\eta_0(T)}{P_{\text{app}}}$$

Figure 9. DEIC as a function of placement speed and compaction force on CF/PEKK UD tapes^[2].

STEPWIND

Percolation flow

$$t_{\text{imp}} = \frac{\left(1 - V_f\right)L^2}{2K_{\perp,\text{hex}}(V_f, R)} \frac{\eta(T)}{\Delta P(P_{\text{app}})}; \quad K_{\perp,\text{hex}} = \frac{16}{9\pi\sqrt{6}} \left(\sqrt{\frac{V_{f_{max}}}{V_f}} - 1\right)^{\frac{7}{2}} R^2$$

Figure 10. Time of impregnation as a function of nip point temperature and compaction pressure in LATP of CF/PEEK UD tapes^[4].

Squeeze flow

$$\bar{t}_{ic} = \left(D_{ic,0}^{-5} - 1\right) \left(\frac{1}{5} \frac{d_0^2}{\left(1 + \frac{w_0}{d_0}\right) a_0^2}\right) \frac{\eta_0(T)}{P_{\text{app}}}$$

Figure 9. DEIC as a function of placement speed and compaction force on CF/PEKK UD tapes^[2].

STEPWIND

Percolation flow

$$t_{\text{imp}} = \frac{\left(1 - V_f\right)L^2}{2K_{\perp,\text{hex}}(V_f, R)} \frac{\eta(T)}{\Delta P(P_{\text{app}})}; \quad K_{\perp,\text{hex}} = \frac{16}{9\pi\sqrt{6}} \left(\sqrt{\frac{V_{f_{max}}}{V_f}} - 1\right)^2 R^2$$

Figure 10. Time of impregnation as a function of nip point temperature and compaction pressure in LATP of CF/PEEK UD tapes^[4].

Figure 11. D_{ic} contact as a function of impregnated depth of the dry fibre bed in LATP of CF/PEEK UD tapes^[4].

Conclusions

- Current achievable LATP placement speeds of thermoplastic composites cannot satisfy wind energy industry needs
- Technology and raw material costs are elevated economy of scale
- Percolation and squeeze flow coexist during in-situ consolidation
 - Degree of intimate contact is a function of the dry fibre bed depth
 - Heavier tows ease fibre bed impregnation, while carbon fibre hinders intra-tow impregnation.
- In-situ consolidation optimisation requires:
 - Process optimisation
 - Optimum pressure: favour squeeze and percolation flow vs. increase fibre volume fraction
 - Optimum temperature: minimise viscosity vs. thermal degradation
 - Material optimisation
 - Matrix viscosity
 - Surface roughness
 - Dry fibre bed depth

References

[1] Ennis, Brandon Lee, Christopher Lee Kelley, Brian Thomas Naughton, Bob Norris, Sujit Das, Dominic Lee, and Dave Miller. (11-2019AD) 2019. "Optimized Carbon Fiber Composites In Wind Turbine Blade Design".

[2] Çelik, O., Peeters, D., Dransfeld, C. and Teuwen, J., 2020. Intimate contact development during laser assisted fiber placement: Microstructure and effect of process parameters. *Composites Part A: Applied Science and Manufacturing*, 134, p.105888. https://doi.org/10.1016/j.compositesa.2020.105888

[3] Stokes-Griffin, C. and Compston, P., 2015. A combined optical-thermal model for near-infrared laser heating of thermoplastic composites in an automated tape placement process. *Composites Part A: Applied Science and Manufacturing*, 75, pp.104-115. https://doi.org/10.1016/j.compositesa.2014.08.006

[4] Thijs Kok, (2018). On the consolidation quality in laser assisted fiber placement. The role of the heating phase. PhD Thesis, University of Twente.

[5] Lee, W. and Springer, G., 1987. A Model of the Manufacturing Process of Thermoplastic Matrix Composites. *Journal of Composite Materials*, 21(11), pp.1017-1055. https://doi.org/10.1177%2F002199838702101103

References

[6] Grouve, W., Warnet, L., Rietman, B., Visser, H. and Akkerman, R., 2013. Optimization of the tape placement process parameters for carbon–PPS composites. *Composites Part A: Applied Science and Manufacturing*, 50, pp.44-53. https://doi.org/10.1016/j.compositesa.2013.03.003

raining network in floating wind energy

Automated tape placement of carbon fibre reinforced thermoplastics for offshore wind turbine blades

Alejandro Jiménez del Toro

ÉireComposites Technical University of Delft

