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Why Model Testing?

Hexicon Prototype [3] Hexicon Model Test at MARIN [4]

aerodyn SCDneezy2 1:36 Model Test[5] aerodyn SCDneezy2 1:10 Prototype [6]



Model Testing Approaches

Full 
Approach

Hybrid 
Approach

[8]
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[8] [9]



Model Testing Approaches

(-) Repeatability of the wind field

(-) Blade scaling process

(-) Versatility

(-) Costly

(+) Likely to capture unseen phenomena

Full-Approach Testing of the TripleSpar at DTU [10]



Model Testing Approaches

Wave Basin Hybrid Testing Wind Tunnel Hybrid Testing



Model Testing Approaches

Complementarity of model testing methods [8].

[10]



PoliMi Setup

HexaFloat and DTU 10 MW performance scaled rotor.

High quality wind field generated at the
boundary layer section of the GPVM.

Allows testing of different mooring system
and platform concepts.

Unsteady aerodynamics via imposed motion.

Test different control strategies.

Wake characterization.



PoliMi Setup

Boundary Layer Section:
13,84m wide x 3,84m high x 35m long



PoliMi Setup

HexaFloat 6-DOFs Parallel Kinematic Robot



Setup Control Scheme

Control Scheme

RUAG Sensor

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: Correction loads
𝐹𝐹𝑤𝑤𝑤𝑤: Wind turbine loads

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅: Tower-base loads
𝑞𝑞𝑠𝑠: Platform set-point

𝑞𝑞𝑎𝑎: Platform actual position

�𝑞𝑞𝑎𝑎: Platform actual position estimate

𝑞𝑞: Platform position from HIL model

𝑙𝑙𝑎𝑎: HexaFloat actuators actual position
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Control Scheme

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: Correction loads
𝐹𝐹𝑤𝑤𝑤𝑤: Wind turbine loads

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅: Tower-base loads
𝑞𝑞𝑠𝑠: Platform set-point
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�𝑞𝑞𝑎𝑎: Platform actual position estimate

𝑞𝑞: Platform position from HIL model

𝑙𝑙𝑎𝑎: HexaFloat actuators actual position

𝐹𝐹𝑤𝑤𝑤𝑤 = 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑤𝑤 ̇�𝑞𝑞𝑎𝑎 + [𝐾𝐾𝑤𝑤] �𝑞𝑞𝑎𝑎

RUAG Sensor



Numerical Modelling Approach
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Numerical Modelling Approach

𝑀𝑀𝑠𝑠 + 𝐴𝐴∞ �̈�𝑥
I. Platform and Turbine Inertia Tensor

Mass matrix of the global floating 
system

Infinite-frequency hydrodynamic
added mass matrix
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Requires simplifications to 
run in real-time



Numerical Modelling Approach

𝑀𝑀 𝑟𝑟 �̈�𝑟 = 𝐹𝐹(𝑟𝑟, �̇�𝑟)

𝑀𝑀 𝑟𝑟 = 𝑚𝑚 + [𝑎𝑎(𝑟𝑟)]

𝐹𝐹 𝑟𝑟, �̇�𝑟 = 𝑇𝑇𝑣𝑣+ ⁄1 2
𝑟𝑟 − 𝑇𝑇− ⁄1 2

𝑟𝑟 + 𝐶𝐶𝑣𝑣+ ⁄1 2
�̇�𝑟, 𝑟𝑟 − 𝐶𝐶𝑣𝑣− ⁄1 2

�̇�𝑟, 𝑟𝑟 + 𝑊𝑊𝑣𝑣 + 𝐵𝐵𝑣𝑣 �̇�𝑟, 𝑟𝑟 + 𝐷𝐷𝑝𝑝𝑣𝑣 �̇�𝑟 + 𝐷𝐷𝑞𝑞𝑣𝑣 �̇�𝑟

𝑇𝑇: 𝑇𝑇𝑒𝑒𝑛𝑛𝑠𝑠𝑖𝑖𝑙𝑙𝑒𝑒 𝐿𝐿𝑜𝑜𝑎𝑎𝑑𝑑𝑠𝑠
𝐶𝐶: Damping

𝑊𝑊: Weight

MoorDyn Lumped-Elements Model

𝐷𝐷𝑝𝑝: Viscous transverse damping

𝐷𝐷𝑞𝑞: Viscous tangential damping
𝐵𝐵𝑣𝑣: Seabed contact



Real-Time Simplifications

I. Radiation forces.

II. Number of harmonics considered in the spectrum of the irregular sea state
simulations.

III. Number of elements dividing the substructure 𝐹𝐹𝑣𝑣𝑣𝑣𝑠𝑠𝑐𝑐.

IV. Number of nodes composing the mooring lines.

V. the choice of specific contributions in terms of forces to be considered from
the internal nodes of the catenary.
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Cummins Equation. SSfitting toolbox



Real-Time Simplifications

I. Radiation forces.

II. Number of harmonics considered in the spectrum of the irregular sea state
simulations.

III. Number of elements dividing the substructure 𝐹𝐹𝑣𝑣𝑣𝑣𝑠𝑠𝑐𝑐.

IV. Number of nodes composing the mooring lines.

V. the choice of specific contributions in terms of forces to be considered from
the internal nodes of the catenary.

Approximation of the convolution term in the 
Cummins Equation. SSfitting toolbox

Decrease frequency resolution



Real-Time Simplifications

Viscous Forces

𝑓𝑓𝑤𝑤 𝑧𝑧, 𝑡𝑡 = 1
2
𝐶𝐶𝐷𝐷𝐷𝐷 𝑣𝑣𝑐𝑐𝑤𝑤𝑝𝑝,𝑤𝑤 𝑣𝑣𝑐𝑐𝑤𝑤𝑝𝑝,𝑤𝑤

𝑓𝑓𝑐𝑐𝑎𝑎𝑟𝑟 𝑧𝑧, 𝑡𝑡 = 1
2
𝐶𝐶𝐷𝐷𝐷𝐷 𝑣𝑣𝑐𝑐𝑤𝑤𝑝𝑝,𝑐𝑐𝑎𝑎𝑟𝑟 𝑣𝑣𝑐𝑐𝑤𝑤𝑝𝑝,𝑐𝑐𝑎𝑎𝑟𝑟

𝑓𝑓𝑎𝑎𝑎𝑎 𝑧𝑧, 𝑡𝑡 = 1
2
𝐶𝐶𝑎𝑎𝑎𝑎𝜋𝜋

𝐷𝐷2

4𝐿𝐿
𝑣𝑣𝑐𝑐𝑤𝑤𝑝𝑝,𝑎𝑎𝑎𝑎 𝑣𝑣𝑐𝑐𝑤𝑤𝑝𝑝,𝑎𝑎𝑎𝑎



Real-Time Simplifications

Mooring Lines



Real-Time Simplifications

Mooring Lines

𝐹𝐹 𝑟𝑟, �̇�𝑟 = 𝑇𝑇𝑣𝑣+ ⁄1 2
𝑟𝑟 − 𝑇𝑇− ⁄1 2

𝑟𝑟 + 𝐶𝐶𝑣𝑣+ ⁄1 2
�̇�𝑟, 𝑟𝑟 − 𝐶𝐶𝑣𝑣− ⁄1 2

�̇�𝑟, 𝑟𝑟 + 𝑊𝑊𝑣𝑣 + 𝐵𝐵𝑣𝑣 �̇�𝑟, 𝑟𝑟 + 𝐷𝐷𝑝𝑝𝑣𝑣 �̇�𝑟 + 𝐷𝐷𝑞𝑞𝑣𝑣 �̇�𝑟
𝐷𝐷𝑝𝑝: Viscous transverse damping 𝐷𝐷𝑞𝑞: Viscous tangential damping

Combined 
Decay



Comparison of the Experiments with Numerical Simulations 

DTU 10MW TripleSpar [10]

Experimental Results [11]
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