

Dynamic Cable Layout Optimization

Manuel Rentschler

TWIND Online Summer School

Dynamic cable challenges

- 55% of insurance claims and 75% of claim value in offshore wind farms are related to inter-array cable faults (GCube 2019)
- Root causes for failures identified by JIP Cable Lifetime Monitoring
 - Design and manufacturing faults
 - Errors during installation process
 - Unearthing
- Additional challenges for dynamic cables exposed to
 - Platform motion
 - Wave excitation
 - Currents
- Very **limited field and research experience** in floating renewable energies environment!

Scope of WavEC's umbilical layout tool

Optimize dynamic behavior

Reduce risk of mechanical failures and power loss

Increase project reliability, longevity, and ultimately, profit

Umbilical cross section

Cable failure modes

WavEC's research

Exceeding max. tension (armor)

Compression → birdcaging (armor)

Overbending (core, insulation)

Fatigue (core, sheath)

Abrasion (outer jacket)

Electrical treeing (insulation)

Water ingress (insulation)

Impact...

Optimization procedure

- Buoyancy supported lazy wave decouples motions of floating platforms and power cable
- **Genetic algorithm** optimizes number and location of buoyancy elements 0

• Multiple failure modes/evaluation criteria are considered at same time

Evaluation procedure

• Fitness function with customizable weights

$$fit = (D_{max})^{\alpha} + \left(\frac{\rho_{max}}{MAC}\right)^{\beta} + \left(\frac{T_{max}}{MBL}\right)^{\gamma} + \left(\frac{l_{buoyancy}}{l_{total}}\right)^{\delta}$$

Fatigue assessment

- Based on non-linear material properties of the copper conductors → strain-cycle curve
- Strain from curvature history from OrcaFlex

$$\varepsilon = \frac{D_{\varepsilon}}{2 \cdot BR} = \frac{D_{\varepsilon}}{2} \cdot \rho$$

Accumulative damage value through application of Rainflow counting and Miner's rule

Applicability throughout project lifecycle

- Design tool for (Pre-)FEED
 - Feasibility study
 - Layout recommendation
 - Auxiliary element specifications
- Asset management/O&M tool during operational life
 - Monitoring, digital twin:
 Fatigue assessment in (almost) real time
 - Mid-life refit, e.g. if
 real environmental conditions ≠ design conditions
- After project lifetime
 - Life extension
 - Second life

Case study

- Challenge: Selection of load cases to comply with DNV GL
 - Operational and extreme metocean conditions
 - Vortex induced vibrations (VIV)
 - Marine growth
 - Cable clashing

Implementation

- Two different cable configurations (scopes) optimized by GA
- Hydrodynamic simulations performed with industry standard software OrcaFlex

Results

- Overview of safety factors
- Discussion of dimensioning hang-off loads
- Selection of best performing cable configuration
- Specifications for auxiliary elements (floaters, bend stiffener)

	Cable Specification	Configuration A		Configuration B	
		Value	Safety Factor	Value	Safety Factor
Max. effective cable tension	100 kN	5 kN	20.0	9 kN	11.1
Max. effective cable tension (fouled)	100 kN	8 kN	12.5	12 kN	8.3
Max. cable curvature (1/MBR)	0.8 m ⁻¹	0.38 m ⁻¹	2.1	0.35 m ⁻¹	2.3
Max. cable curvature (fouled)	0.8 m ⁻¹	0.35 m ⁻¹	2.3	0.25 m ⁻¹	3.2
Min. cable clearance		0.50 m		2.5 m	
Min. cable clearance (fouled)		0		1.5 m	
Max. axial force at the I-tube		5 kN		10 kN	
Max. shear force at the I-tube		7 kN		8 kN	
Max. bending moment at the I-tube		10 kNm		10 kNm	

Benefits & advantages

Novel optimization approach

Customizable multiparametric evaluation with fitness function Superior to generic layout, typical fatigue reduction ≥ 50 %

Wide applicability throughout project lifecycle

Reassure investors, increase bankability Empowering new business models (leasing)

References

Publications

- K. Krügel, Hydrodynamic design of umbilical systems for floating offshore wind applications, presented at the FOWT 2017 Conference on 15th March 2017
- M. Rentschler et al., Design optimization of dynamic inter-array cable systems for floating offshore wind turbines, Renewable and Sustainable Energy Reviews 111 (2019), https://doi.org/10.1016/j.rser.2019.05.024
- M. Rentschler et al., Parametric study of dynamic inter-array cable systems for floating offshore wind turbines, Marine Systems & Ocean Technology 15 (2020), https://doi.org/10.1007/s40868-020-00071-7

Picture credits

- p.2: BARDOT. Floating wind turbine cables protection systems for both inter-array cables and export cables
- p.5: https://www.maritime-executive.com/media/images/article/Photos/Technology/Cropped/Submarine%20power%20cable%20file%20image%20reddit%2016x9.jpg
- p.5: https://ars.els-cdn.com/content/image/1-s2.0-S0951833912000263-gr3.jpg
- p.5: https://www.dir.ca.gov/dosh/dosh publications/Electrical Safety.pdf
- p.5: https://www.whb-baumaschinen.com/ENGLISH/SERVICE_e/Maintance_Service/tecrir3.jpg
- p.5: https://www.bpp-tech.com/wp-content/uploads/2019/05/Els_L56916_00.png
- p.5: https://www.researchgate.net/profile/Christian_Laurent/publication/260589456/figure/fig2/AS:296737773244418@1447759207218/Electrical-and-water-treeing-in-polyethylene-insulated-cable-a-Electrical-trees-grown.png
- p.5: https://www.ntnu.edu/documents/1263763591/1269572391/HVDC+protection+Raymundo+Torres-Olguin.pdf/a80858b8-b96c-4632-8f22-90f480dd2cf1
- p.5: https://img.seoul.co.kr/img/upload/2014/08/18/SSI 20140818112810 V.jpg
- p.10: https://gcaptain.com/wp-content/uploads/2015/05/Jack-St.-Malo_9599-300x3041.jpg

P Edifício Diogo Cão

Doca de Alcântara norte 1350-352 Lisboa | Portugal

T: +351 218482 655

www.wavec.org

FOLLOW US

