Dynamic cable lazy wave design

4 – Add a tether to reduce seabed abrasion and migration

Dynamic cable lazy wave design

Final lazy wave design

Dynamic Inter-Array Cables – design for reliability

Real Cable Integrity Problems

Improving Reliability by Lifecycle

Design

- Strong case for improved component specifications
- Need for feedback from previous integrity issues

Operation

- Multiple causes; insulation most sensitive to wear-out
- More failures are likely to come with aging assets

Cable to structure interface

Manufacturing

• "Root cause is...poor specifications and acceptance testing" [3]

Power Cable Manufacturing [7]

• "The current power cables IEC standards do not provide adequate recommendations for after-laying testing..." [6]

3D sonar installation survey [5]

- [5] CodaOctopus, 3D sonar installation survey
- [6] Energies article, "On-Site Submarine Cable Testing and Diagnosis with Damped AC", 2019
- [7] JDR Cables, "Subsea Power Cables"

Solution: robust cable testing & qualification

Solution: cable in-service health monitoring (digital twin)

Floating Wind Failure Scenario – Mooring Failure & Drift-Off

y @orecatapult