Data-Driven Surrogate Models for (Floating) Offshore Wind **Turbines**

STEP-WIND

fraining network in floating wind energy

FUDelft SIEMENS Gamesa

Deepali Singh

Richard P. Dwight, Laurent Beaudet, Kasper Laugesen, Paul Deglaire, **Axelle Viré**

oiect has received funding he European Union's Horizon 202 esearch and innovation progra

Photo: Principle Power

Structure

- WHAT and WHY: FOWT design challenges
- HOW: machine learning framework and stochastic models

Wind Turbine Design Challenges

Directionality Currents Conditions [1] Multi-dimensional probabilistic design space with ~1M *expensive* aero-servo-

Sea

Ultimate, Extreme, Average and Fatigue

Water Level

Other

Wind Turbine Design Challenges

Proposed Solution

STEP-WIND

[2] Schröder, L., Dimitrov, N. K., Verelst, D. R., A surrogate model approach for associating wind farm load variations with turbine failures (2020) Wind Energy Science [3] Zhu, X., Sudret, B. Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models (2021) Reliability Engineering & System Safety

Machine Learning Framework

under grant agreement No. 860737

Machine Learning Framework

System Behaviour

System Behaviour

STEP²

WIND

Stochastic System

STEP-WIND

Stochastic Models

Dataset $D = \{(x_i, y_i) | i = 1, ..., n\}$

STFP

WIND

Gaussian Process Regression/ Kriging^[1]

Gaussian process is a class of probability distribution over possible functions that fit a set of points, and represents prior knowledge about f

$$y_i = f(x_i) + \epsilon_i$$

$$\epsilon_i = N(0, \sigma^2)$$

$$cov(y_i, y_j) = \eta^2 \exp\left(-\frac{1}{2}\frac{|x_i - x_j|^2}{|x_i|^2}\right) + \sigma^2 \delta_{ij}$$

$$y|D = N(\hat{\mu}, \hat{\Sigma})$$

Gaussian Process with a latent variance^[2]

$$y_i = f(x_i) + \epsilon_i$$

$$z_i = \log(SD(\epsilon(x_i))) = r(x_i) + J_i$$

Gaussian Process with a latent covariate^[3]

$$y_{i} = g(x_{i}, z_{i}) + \zeta_{i}$$

$$f(x) = \int g(x, z)p(z)dz$$

$$cov(y_{i}, y_{j}) = \eta^{2} \exp\left(-\sum_{k=1}^{p} \frac{1}{2} \frac{|x_{i} - x_{j}|^{2}}{l_{k}^{2}} - \frac{(z_{i} - z_{j})^{2}}{l_{p+1}^{2}}\right) + \sigma^{2} \delta_{ij}$$

Average Reference Wind Speed

Average Reference Wind Speed

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 860737.

 Ref [1] C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning (2006) MIT Press. ISBN 026218253X

 Useful: https://aerodynamics.lr.tudelft.nl/~rdwight/cfdiv/Videos/04/index.html

 [2] Goldberg, P. W., Williams, C. K. I., Bishop, C. M., Regression with input dependent noise: A Gaussian process treatment (1998) Advances in neural information

 Processing Systems

 [3] Wang, C., Neal, R., Gaussian Process Regression with Heteroscedastic or Non-Gaussian Residuals (2012) arXiv:1212.6246v1

Stochastic Models

Dataset $D = \{(x_i, y_i) | i = 1, ..., n\}$

• Stochastic gradient variational Bayes^[1]

$$\begin{split} y &= f_{\theta}(x,z) \\ p(y|x) &= \int p(y|x,z) \, p(z|x) \, dz \\ p(y|x,z) \text{ parametrized to } p_{\theta}(y|x,z) \text{ -> decoder} \\ p(z|x,y) \text{ parametrized to } q_{\phi}(z|x,y) \text{ -> encoder} \\ \log p(y|x,z) &= \log N(y;\mu,\sigma^2 I) \text{ -> } \mu = W_1 h + b_1 \text{ and } \log \sigma^2 = W_2 h + b_2 \end{split}$$

- Conditional generative model^[2]
 - Based on sgvb, but the model is trained by minimizing difference between the joint distribution of the generated data $p_{\theta}(x, y)$ and the joint distribution of the observed data q(x, y)
- Replication based models^[3]
 - Regression performed over the parameters of a generalizable PDF
- Overview of other interesting methods: reference^[4]

Ref [1] Kingma, D. P., Welling, M., Auto-encoding variational bayes (2014) 2nd International Conference on Learning Representations, Conference Track Proceedings
 [2] Yang, Y., Perdikaris, P., Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems (2019) Computational Mechanics
 [3] Zhu, X., Sudret, B. Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models (2021) Reliability Engineering & System Safety
 [4] Sudret, B. and Zhu, X., Surrogate models for stochastic simulators: an overview with a focus on generalized lambda models (2021) MascotNum Workshop on "Stochastic simulators" (online)

Results - averaged loads

Results – stddev loads

Ref [1] Kingma, D. P., Welling, M., Auto-encoding variational bayes (2014) 2nd International Conference on Learning Representations, Conference Track Proceedings
 [2] Yang, Y., Perdikaris, P., Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems (2019) Computational Mechanics
 [3] Zhu, X., Sudret, B. Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models (2021) Reliability Engineering & System Safety
 [4] Sudret, B. and Zhu, X., Surrogate models for stochastic simulators: an overview with a focus on generalized lambda models (2021) MascotNum Workshop on "Stochastic simulators" (online)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 860737.