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Structure

WHAT and WHY: FOWT design challenges

HOW: machine learning framework and stochastic models
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Wind Turbine Design Challenges

Design Situation Wind Wave Wind Wave Sea Water Level Other
I:A . Conditions Directionality Currents Conditions
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_ Power production
/ Power production or
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Normal shut down
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Turbulence \p
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Hydrodynamics Multi-dimensional probabilistic design
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hydro-elastic simulations
Wind-wave misalignment | * T A
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Extreme wind and wave Mooring Line Dynamics
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L | Ultimate, Extreme, Average and Fatigue
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Wind Turbine Design Challenges
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oo Ref [1] Dimitrov, N. K., Kelly, M., Vignaroli, A., Berg, J., From wind to loads: wind turbine site-specific load estimation with surrogate models trained on high-fidelity load
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Machine Learning Framework
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Machine Learning Framework
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System Behaviour

Deterministic Mig:x >y

System
D = {(xi'yi)“ = 1, ,Tl}

M,:D, X Q> R

Stochastic (x,2) = M,(x, 2)1

[}

Ref [1] Zhu et. al., Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions
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System Behaviour

Deterministic

System
D ={(x;,y)li=1,..,n}

Stochastic

[}

Mij:x -y

Mg:D, x Q- R
(x,z) » M;(x, z)1!

If x = xp:

(YX = x¢) = Ms(x0,2)

If z = z,:

X = MS (.X', ZO)

Ref [1] Zhu et. al., Replication-based emulation of the response distribution of stochastic simulators using generalized lambda distributions
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ST E Pz"’ i W I N D (2020) International Journal for Uncertainty Quantification
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Stochastic System
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Stochastic Models

Dataset D = {(x;, y; )i =1, ...,n}

Gaussian Process Regression/ Kriging!t!

Gaussian process is a class of probability distribution over possible functions that fit a set of points, and represents prior knowledge about f

yi = f(x;) + €
€ = N(0,0%) ,
1 |x- — x-|
cov(yi, ;) =n* exp —E% ) + 0263
y|D = N(@, 2)

Gaussian Process with a latent variance!?
yi = f(x;) + ¢
z; = log (SD(E(xi))) =r(x;) +J;

Gaussian Process with a latent covariatel3!
yi =9, z)+
f@x) = [ gx, 2)p(z)dz

2
1|x; — x; Zi — Z;
cov(y;,y;) =1n* exp <_Z£=1 §| l 12 A B ( ll2+1]) ) +0* &y
%
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" fise: Ref [1] C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning (2006) MIT Press. ISBN 026218253X
S E Pz’ | W I N D Useful: https://aerodynamics.Ir.tudelft.nl/~rdwight/cfdiv/Videos/04/index.html
I [2] Goldberg, P. W., Williams, C. K. I., Bishop, C. M., Regression with input dependent noise: A Gaussian process treatment (1998) Advances in neural information

i

Processing Systems
[3] Wang, C., Neal, R., Gaussian Process Regression with Heteroscedastic or Non-Gaussian Residuals (2012) arXiv:1212.6246v1

* K % This project has received funding from
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Stochastic Models

Dataset D = {(x;, y; )i =1, ...,n}

Stochastic gradient variational Bayes!!]
Y = fo(x,2)
pIx) = [ p(ylx, 2) p(zlx) dz
p(y|x, z) parametrized to py (v|x, z) -> decoder
p(z|x,y) parametrized to q4(z|x, y) -> encoder

logp(y|x,z) = logN(y; u, 1) ->u = Wh + b; andloga? = W,h + b,

Conditional generative model!

Based on sgvb, but the model is trained by minimizing difference between the joint distribution of the generated data pg(x, y) and the joint distribution of the observed
data q(x,y)

Replication based models!3!

Regression performed over the parameters of a generalizable PDF

Overview of other interesting methods: reference!*l

[}

* p K under grant agreement No. 860737.
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4 Ref [1] Kingma, D. P., Welling, M., Auto-encoding variational bayes (2014) 2nd International Conference on Learning Representations, Conference Track Proceedings
— [2] Yang, Y., Perdikaris, P., Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems (2019) Computational Mechanics Ttal o mﬁ ELﬁf;;ah:Sdﬁfj:]vsedHfougf;T]g%’2"[1)
[ [3] Zhu, X., Sudret, B. Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models (2021) Reliability Engineering & System Safety SRR rcscarch and innovation programme

[4] Sudret, B. and Zhu, X., Surrogate models for stochastic simulators: an overview with a focus on generalized lambda models (2021) MascotNum Workshop on “Stochastic simulators” (online)
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Results - averaged loads
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Results — stddev loads
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Questions
d.singh-1@tudelft.nl
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